“Divide and Conquer”

- Very important strategy in computer science:
 - Divide problem into smaller parts
 - Independently solve the parts
 - Combine these solutions to get overall solution
- **Idea**: Divide array into two halves, *recursively* sort left and right halves, then *merge* two halves \(\rightarrow\) known as **Mergesort**

“Divide and Conquer”

- Example: Mergesort the input array:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

- Divide it in two at the midpoint
- Conquer each side in turn (by recursively sorting)
Mergesort Example

```
Mergesort Example

| 8 | 2 | 9 | 4 | 5 | 3 | 1 | 6 |

Divide

| 8 | 2 | 9 | 4 | 5 | 3 | 1 | 6 |

Divide

| 2 | 8 |

Divide

| 2 | 4 | 8 | 9 |

Divide

| 1 | 3 | 5 | 6 |

Divide

| 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 |

Merge

Divide

| 8 | 2 | 9 | 4 | 5 | 3 | 1 | 6 |

Merge

| 2 | 4 | 8 | 9 |

Merge

| 1 | 3 | 5 | 6 |

Merge

| 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 |
```

Mergesort - driver

```c
void Mergesort(ElementType A[], int N) {
    ElementType *TmpArray;
    TmpArray = malloc(N*sizeof(ElementType));
    FatalErrorMemory(TmpArray);
    MSort(A, TmpArray, 0, N-1);
    free(TmpArray);
}
```

- Driver routine Mergesort calls the actual recursive implementation routine MSort with appropriate parameters
 - Hides implementation details from outside callers

Mergesort - recursion

```c
void MSort(ElementType A[], ElementType TmpArray[], int Left, int Right) {
    int Center;
    if (Left < Right) {
        Center = (Left+Right)/2;
        MSort(A, TmpArray, Left, Center);
        MSort(A, TmpArray, Center+1, Right);
        Merge(A, TmpArray, Left, Center+1, Right);
    }
}
```

- Divide, and leave the conquering to Merge ...
 - note the base case Left==Right

Mergesort - do it

```c
void Merge(ElementType A[], ElementType TmpArray[], int Lpos, int Rpos, int RightEnd) {
    int i, LeftEnd, NumElements, TmpPos;
    LeftEnd = Rpos-1; TmpPos = Lpos; NumElements = RightEnd - Lpos + 1;
    while (Lpos <= LeftEnd && Rpos <= RightEnd) {
        else TmpArray[TmpPos++] = A[Rpos++];
    }
    while (Lpos <= LeftEnd) TmpArray[TmpPos++] = A[Lpos++];
    while (Rpos <= RightEnd) TmpArray[TmpPos++] = A[Rpos++];
    for (i=0; i<NumElements; i++, RightEnd--)
        A[RightEnd] = TmpArray[RightEnd];
}
```
Mergesort Example

<table>
<thead>
<tr>
<th>Divide down to 1 element</th>
<th>8 2 9 4 5 3 1 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merge to TmpArray</td>
<td>2 8</td>
</tr>
<tr>
<td>Copy back to A[]</td>
<td>2 8 9 4 5 3 1 6</td>
</tr>
<tr>
<td>Merge to TmpArray</td>
<td>2 8 4 9</td>
</tr>
<tr>
<td>Copy back to A[]</td>
<td>2 8 4 9 5 3 1 6</td>
</tr>
<tr>
<td>Merge to TmpArray</td>
<td>2 4 8 9</td>
</tr>
<tr>
<td>Copy back to A[]</td>
<td>2 4 8 9 5 3 1 6</td>
</tr>
</tbody>
</table>

Left half is now sorted ...

Mergesort Analysis

- Let $T(N)$ be the running time for an array of N elements
- Mergesort divides array in half and calls itself on the two halves. After returning, it merges both halves using a temporary array
- Each recursive call takes $T(N/2)$ and merging takes $O(N)$

Mergesort Recurrence Relation

- The recurrence relation for $T(N)$ is:
 - $T(1) = O(1)$
 - base case: 1 element array \rightarrow constant time
 - $T(N) = 2T(N/2) + N$
 - Sorting N elements takes
 - the time to sort the left half
 - plus the time to sort the right half
 - plus an $O(N)$ time to merge the two halves

Solving the Mergesort Recurrence Relation

- Solve the recurrence by expanding the terms:
 $T(N) = 2*T(N/2) + N$ and $T(N/2) = 2*T(N/4) + N/2$
 $T(N) = 2*[2*T(N/4) + N/2] + N$
 $= 2^2*T(N/2^2) + 2*N$
 $= 2^2*[2*T(N/8) + N/4] + 2*N$
 $= 2^3*T(N/2^3) + 3*N$
 ...
 $= 2^{\log N}T(N/2^{\log N}) + (\log N)*N$ (recall that $2^{\log N} = N$)
 $= N*T(1) + N \log N$
 $= N*O(1) + N \log N = O(N \log N)$

- $T(N)$ is $O(N \log N)$