Shell Sort

CSE 373 - Data Structures
May 8, 2002
Readings and References

- Reading
 - Sections 7.4, *Data Structures and Algorithm Analysis in C*, Weiss

- Other References
Swapping adjacent elements

- An "average" list will contain half the max number of inversions = \(\frac{(n-1)n}{4} \)
 - So the average running time of Insertion sort is \(\Theta(N^2) \)
- Any sorting algorithm that only swaps adjacent elements requires \(\Omega(N^2) \) time because each swap removes only one inversion
The search for speed

- If we are going to do better than $O(N^2)$, we are going to have to fix more than one inversion at a time
- How can we fix more than one inversion?
 - Move the elements further with each swap
Shell sort: Better than Quadratic

- Named after Donald Shell – inventor of the first algorithm to achieve $o(N^2)$
 - Running time is $O(N^x)$ where $x = 3/2, 5/4, 4/3, \ldots,$ or 2 depending on “increment sequence”
- Shell sort uses repeated insertion sorts on selected subarrays of the larger array being sorted
- Multiple passes with changing subarrays
Subarrays (or subsequences)

- Remember that in the discussion of binary heaps I showed how we could sort a *path* through the tree.

- Similarly, we can sort a *subarray* contained in a larger array.
Subarrays: increment = 5

subarray 1

subarray 2

subarray 3

subarray 4

subarray 5
Subarrays: increment = 2

subarray 1

subarray 2
Shell Sort: diminishing increments

- Uses an *increment sequence* $h_1 < h_2 < \ldots < h_t$
 - Start sorting with the largest increment h_t
 - Sort all subarrays of elements that are h_k apart so that $A[i] \leq A[i+h_k]$ for all i → known as an h_k-sort
 - Go to next smaller increment h_{k-1} and repeat
- Stop sorting after $h_1 (=1)$
- Choice of increments is important
 - and hard to analyze
Shellsort

```c
void Shellsort( ElementType A[ ], int N ){
    int i, j, Increment; ElementType Tmp;
    for( Increment = N/2; Increment > 0; Increment /= 2 )
        for( i = Increment; i < N; i++ )
            {Tmp = A[ i ];
             for( j = i; j >= Increment; j -= Increment )
                 if( Tmp < A[ j - Increment ] )
                 else
                     break;
            A[ j ] = Tmp;
        }
}
```

Note: the actual sorting is done by insertion sort: "copy down and insert the value in the right place" on each subarray in the innermost loop and A[j]=Tmp
for (i=Increment; i<N; i++)

i = 5

1 2 3 8 7 9 10 12 23 18 15 16 17 14
0 1 2 3 4 5 6 7 8 9 10 11 12 13

i = 6

1 2 3 8 7 9 10 12 23 18 15 16 17 14
0 1 2 3 4 5 6 7 8 9 10 11 12 13

i = 7

1 2 3 8 7 9 10 12 23 18 15 16 17 14
0 1 2 3 4 5 6 7 8 9 10 11 12 13

i = 8

1 2 3 8 7 9 10 12 23 18 15 16 17 14
0 1 2 3 4 5 6 7 8 9 10 11 12 13

i = 9

1 2 3 8 7 9 10 12 23 18 15 16 17 14
0 1 2 3 4 5 6 7 8 9 10 11 12 13

i = 10

1 2 3 8 7 9 10 12 23 18 15 16 17 14
0 1 2 3 4 5 6 7 8 9 10 11 12 13

i = 11

1 2 3 8 7 9 10 12 23 18 15 16 17 14
0 1 2 3 4 5 6 7 8 9 10 11 12 13

i = 12

1 2 3 8 7 9 10 12 23 18 15 16 17 14
0 1 2 3 4 5 6 7 8 9 10 11 12 13

i = 13

1 2 3 8 7 9 10 12 23 18 15 16 17 14
0 1 2 3 4 5 6 7 8 9 10 11 12 13
Shellsort: Basic Insight

- Insertion sort runs fast on nearly sorted sequences
 - immediate termination when proper spot is found
- do several passes of Insertion sort on different subsequences of elements
- note that the subsequences stay sorted from pass to pass
Example

- Sort 19, 5, 2, 1 with increment sequence 1,2
 - Insertion sort on subsequences of elements spaced apart by 2: 1st and 3rd, 2nd and 4th
 - 19, 5, 2, 1 → 2, 1, 19, 5
 - Do Insertion sort on subsequence of elements spaced apart by 1:
 - 2, 1, 19, 5 → 1, 2, 19, 5 → 1, 2, 19, 5 → 1, 2, 5, 19
- Fewer shifts than plain Insertion sort
 - 4 versus 6 for this example
Some increment sequences

• Some increments that have been studied
 › Shell's increments \[h_1 = \left\lfloor \frac{N}{2} \right\rfloor, h_k = \left\lfloor \frac{h_{k+1}}{2} \right\rfloor \]
 • bad choice since the subarrays can coincide and so you end up re-sorting something that is already sorted, and not mixing other elements that need it
 › Hibbard's increments
 • relatively prime values: 1, 3, 7, 15, \(2^k-1\)
 › Sedgewick
 • \{1, 5, 19, 41, 109, …\} = 9 \cdot 4^i - 9 \cdot 2^i + 1 or 4^i - 3 \cdot 2^i + 1
Example using Shell's Increments

- Example: Shell’s original sequence: $h_t = \frac{N}{2}$ and $h_k = \frac{h_{k+1}}{2}$
 - Sort $21, 33, 7, 25$ (N = 4, increment sequence = 2, 1)
 - $7, 25, 21, 33$ (after 2-sort)
 - $7, 21, 25, 33$ (after 1-sort)
Shellsort: Run time

```c
void Shellsort( ElementType A[ ], int N ){
    int i, j, Increment; ElementType Tmp;
    for( Increment = N/2; Increment > 0; Increment /= 2 )
        for( i = Increment; i < N; i++ )
            {
                Tmp = A[ i ];
                for( j = i; j >= Increment; j -= Increment )
                    if( Tmp < A[ j - Increment ] )
                    else
                        break;
                A[ j ] = Tmp;
            }
}
```
Shellsort: Shell's Increments

- Algorithm is simple to code but hard to analyze
 - depends on increment sequence
- Shell's increment sequence 1, 2, 4, …, N/4, N/2
 - What is the Upper bound?
 - Shellsort does h_k insertion sorts with N/h_k elements for $k = 1$ to t
 - Running time $= O\left(\sum_{k=1}^{t} h_k \left(\frac{N}{h_k}\right)^2\right) = O\left(N^2 \sum_{k=1}^{t} \frac{1}{h_k}\right) = O(N^2)$
Shellsort: Shell's Increments

• What is the lower bound?
 › Worst case is: smallest elements in odd positions, largest in even positions
 • 2, 11, 4, 12, 6, 13, 8, 14
 › None of the passes N/2, N/4, …, 2 do anything!
 › Last pass (h₁ = 1) must shift N/2 smallest elements to first half and N/2 largest elements to second half
 › at least N² steps = Ω(N²)
Shell's increments
Shell's Increments: $\Omega(N^2)$

- The reason we got $\Omega(N^2)$ was because of increment sequence

 - Adjacent increments have common factors (e.g. 8, 4, 2, 1)

 - We keep comparing same elements over and over again

 - Need increments such that different elements are in different passes
Hibbard's Increments

- Hibbard’s increment sequence:
 - \(2^k - 1, 2^{k-1} - 1, \ldots, 7, 3, 1\)
 - Adjacent increments have no common factors
 - Worst case running time of Shellsort with Hibbard’s increments = \(\Theta(N^{1.5})\) (Theorem 7.4 in text)
 - Average case running time for Hibbard’s = \(O(N^{1.25})\) in simulations but nobody has been able to prove it!
Hibbard's increments

```
for (i=Increment; i<N; i++)
```

Increment=7

```
i = 4
5 1 6 2 7 3 8 4
```

Increment=3

```
i = 3
4 1 6 2 7 3 8 5
```
```
i = 4
2 1 6 4 7 3 8 5
```
```
i = 5
2 1 6 4 7 3 8 5
```
```
i = 6
2 1 3 4 7 6 8 5
```
```
i = 7
2 1 3 4 7 6 8 5
```

Increment=1

```
i = 3
2 1 3 4 5 6 8 7
```
```
i = 4
1 2 3 4 5 6 8 7
```
```
i = 7
2 1 3 4 7 6 8 5
```

etc
General performance

- Insertion sort good for small input sizes
 - ~20
 - often incorporated in other procedures where the list to be sorted is short and is likely to be sorted already
- Shellsort better for moderately large inputs
 - ~10,000