Sort Intro

CSE 373 - Data Structures
May 6, 2002
Readings and References

• Reading
 › Sections 7.1-7.4, *Data Structures and Algorithm Analysis in C*, Weiss

• Other References
Sorting

• Input
 › an array A of data records
 › a key value in each data record
 › a comparison function which imposes a consistent ordering on the keys

• Output
 › reorganize the elements of A such that
 • For any i and j, if i < j then A[i] ≤ A[j]
Consistent Ordering

• The comparison function must provided a consistent ordering on the set of possible keys
 › You can compare any two keys and get back an indication of $a < b$, $a > b$, or $a == b$
 › The comparison functions must be consistent
 • If \texttt{compare}(a,b) says $a < b$, then \texttt{compare}(b,a) must say $b > a$
 • If \texttt{compare}(a,b) says $a == b$, then \texttt{compare}(b,a) must say $b == a$
 • If \texttt{compare}(a,b) says $a == b$, then \texttt{equals}(a,b) and \texttt{equals}(b,a) must say $a == b$
Why Sort?

- Allows binary search of an N-element array in $O(\log N)$ time.
- Allows $O(1)$ time access to the kth largest element in the array for any k.
- Allows easy detection of any duplicates.
- Sorting algorithms are among the most frequently used algorithms in computer science.
Space

• How much space does the sorting algorithm require in order to sort the collection of items?
 › Do you need to copy and temporarily store the set or some subset of the keys and data records?
 › An algorithm which requires $O(1)$ extra space is known as an *in place* sorting algorithm
 › Is the algorithm designed for in-memory operation (internal) or does it use disk or tape (external)?
Time

• How fast is the algorithm?
 › The definition of a sorted array A says that for any \(i<j, A[i] < A[j] \)
 › This means that you need to at least check on each element at the very minimum
 • which is \(O(N) \)
 › And you could end up checking each element against every other element
 • which is \(O(N^2) \)
 › The big question is: How close to \(O(N) \) can you get?
Faster is better!
Stability

- Stability: Does it rearrange the order of input data records which have the same key value (duplicates)?
 - E.g. Phone book sorted by name. Now sort by county – is the list still sorted by name within each county?
 - Extremely important property for databases
 - A **stable sorting algorithm** is one which does not rearrange the order of duplicate keys
Bubble Sort

- “Bubble” elements to their proper place in the array by comparing elements i and $i+1$, and swapping if $A[i] > A[i+1]$.
 - Bubble every element towards its correct position
 - last position has the largest element
 - then bubble every element except the last one towards its correct position
 - then repeat until done or until the end of the quarter
 - whichever comes first...
Bubblesort

/* Bubble sort for integers */
#define SWAP(a,b) { int t; t=a; a=b; b=t; }
void bubble(int A[], int n) {
 int i, j;
 for(i=0; i<n; i++) { /* n passes thru the array */
 /* From start to the end of unsorted part */
 for(j=1; j<(n-i); j++) {
 /* If adjacent items out of order, swap */
 }
 }
}
Put the largest element in its place

1 2 3 8 8

larger value? 2 3 8 8

1 2 3 8 7 9 10 12 23 18 15 16 17 14

swap

1 2 3 7 8 9 10 12 23 18 15 16 17 14

9 10 12 23 23

swap

1 2 3 7 8 9 10 12 18 23 15 16 17 14

1 2 3 7 8 9 10 12 18 15 23 16 17 14

swap

1 2 3 7 8 9 10 12 18 15 23 16 17 14

swap

1 2 3 7 8 9 10 12 18 15 16 23 17 14

swap

1 2 3 7 8 9 10 12 18 15 16 17 23 14

swap

1 2 3 7 8 9 10 12 18 15 16 17 14

23
Put 2^{nd} largest element in its place

Two elements done, only $n-2$ more to go ...
Bubble Sort: Just Say No

• “Bubble” elements to their proper place in the array by comparing elements i and i+1, and swapping if $A[i] > A[i+1]$

• We bubblize for $i=0$ to $n-1$ (ie, n times)
• Each bubblization is a loop that makes $n-i-1$ comparisons
• This is $O(n^2)$
Insertion Sort

- What if first k elements of array are already sorted?
 $\rightarrow 4, 7, 12, 5, 19, 16$

- We can shift the tail of the sorted elements list down and then *insert* next element into proper position and we get $k+1$ sorted elements
 $\rightarrow 4, 5, 7, 12, 19, 16$
Insertion Sort

```c
void InsertionSort( ElementType A[ ], int N ) {
    int j, P; ElementType Tmp;
    for( P = 1; P < N; P++ ) {
        Tmp = A[ P ];
        for( j = P; j > 0 && A[ j - 1 ] > Tmp; j-- )
            A[ j ] = A[ j - 1 ];
        A[ j ] = Tmp;
    }
}
```

- Is Insertion sort in place? Stable? Running time = ?
- Do you recognize this sort?
 - This is what we used for percolating binary heap elements.
Insertion Sort Characteristics

• In place and Stable
 › One extra location for Tmp

• Running time
 › Worst case is $O(N^2)$
 • reverse order input
 • must copy every element every time
 › Best case is $\Omega(N)$
 • in-order input
 • copy down stops with first comparison every time
Inversions

- An *inversion* is a pair of elements in wrong order
- By definition, a sorted array has no inversions
- So you can think of sorting as the process of removing inversions in the order of the elements
Inversions

- A single value out of place can cause several inversions
Reverse order

- All values out of place (reverse order) causes numerous inversions
Inversions

• Our simple sorting algorithms so far swap adjacent elements (explicitly or implicitly) and remove just 1 inversion at a time
 › Their running time is proportional to number of inversions in array
• Given N distinct keys, the maximum possible number of inversions is

\[(n-1) + (n-2) + ... + 1 = \sum_{i=1}^{n-1} i = \frac{(n-1)(n)}{2}\]
Inversions and Adjacent Swap Sorts

• "Average" list will contain half the max number of inversions = \(\frac{(n-1)n}{4} \)
 ‣ So the average running time of Insertion sort is \(\Theta(N^2) \)

• Any sorting algorithm that only swaps adjacent elements requires \(\Omega(N^2) \) time because each swap removes only one inversion