Sort Intro

CSE 373 - Data Structures
May 6, 2002

Readings and References

- **Reading**
 - Sections 7.1-7.4, *Data Structures and Algorithm Analysis in C*, Weiss

- **Other References**

Sorting

- **Input**
 - an array A of data records
 - a key value in each data record
 - a comparison function which imposes a consistent ordering on the keys

- **Output**
 - reorganize the elements of A such that
 - For any i and j, if i < j then A[i] ≤ A[j]

Consistent Ordering

- The comparison function must provide a consistent *ordering* on the set of possible keys
 - You can compare any two keys and get back an indication of a < b, a > b, or a == b
 - The comparison functions must be consistent
 - If `compare(a, b)` says a<b, then `compare(b, a)` must say b>a
 - If `compare(a, b)` says a=b, then `compare(b, a)` must say b=a
 - If `compare(a, b)` says a=b, then `equals(a, b)` and `equals(b, a)` must say a=b
Why Sort?

- Allows binary search of an N-element array in O(log N) time
- Allows O(1) time access to kth largest element in the array for any k
- Allows easy detection of any duplicates
- Sorting algorithms are among the most frequently used algorithms in computer science

Space

- How much space does the sorting algorithm require in order to sort the collection of items?
 - Do you need to copy and temporarily store the set or some subset of the keys and data records?
 - An algorithm which requires O(1) extra space is known as an in place sorting algorithm
 - Is the algorithm designed for in-memory operation (internal) or does it use disk or tape (external)?

Time

- How fast is the algorithm?
 - The definition of a sorted array A says that for any i<j, A[i] < A[j]
 - This means that you need to at least check on each element at the very minimum
 - which is O(N)
 - And you could end up checking each element against every other element
 - which is O(N^2)
 - The big question is: How close to O(N) can you get?
Stability

- Stability: Does it rearrange the order of input data records which have the same key value (duplicates)?
 - E.g. Phone book sorted by name. Now sort by county – is the list still sorted by name within each county?
 - Extremely important property for databases
 - A **stable sorting algorithm** is one which does not rearrange the order of duplicate keys

Bubble Sort

- “Bubble” elements to to their proper place in the array by comparing elements i and i+1, and swapping if A[i] > A[i+1]
 - Bubble every element towards its correct position
 - last position has the largest element
 - then bubble every element except the last one towards its correct position
 - then repeat until done or until the end of the quarter
 - whichever comes first ...

Bubblesort

```c
/* Bubble sort for integers */
#define SWAP(a,b) { int t; t=a; a=b; b=t; }
void bubble( int A[], int n ) {
  int i, j;
  for(i=0;i<n;i++) { /* n passes thru the array */
    /* From start to the end of unsorted part */
    for(j=1;j<(n-i);j++) {
      /* If adjacent items out of order, swap */
    }
  }
}
```

Put the largest element in its place
Put 2nd largest element in its place

```
1 2 3 7 8 9 10 12 18 18
1 2 3 7 8 9 10 12 15 18 16 17 14 23
1 2 3 7 8 9 10 12 15 16 18 17 14 23
1 2 3 7 8 9 10 12 15 16 17 18 14 23
1 2 3 7 8 9 10 12 15 16 17 18 23
```

Two elements done, only n-2 more to go ...

Bubble Sort: **Just Say No**

- “Bubble” elements to their proper place in the array by comparing elements i and i+1, and swapping if \(A[i] > A[i+1] \)
- We bubblize for \(i=0 \) to \(n-1 \) (i.e., \(n \) times)
- Each bubblization is a loop that makes \(n-i-1 \) comparisons
- This is \(O(n^2) \)

Insertion Sort

- What if first \(k \) elements of array are already sorted?
 - \(4, 7, 12, 5, 19, 16 \)
- We can shift the tail of the sorted elements list down and then insert next element into proper position and we get \(k+1 \) sorted elements
 - \(4, 5, 7, 12, 19, 16 \)

```c
void InsertionSort( ElementType A[], int N ) {
    int j, P; ElementType Tmp;
    for( P = 1; P < N; P++ ) {
        Tmp = A[ P ];
        for( j = P; j > 0 && A[ j-1 ] > Tmp; j-- )
            A[ j ] = A[ j-1 ];
        A[ j ] = Tmp;
    }
}
```

- Is Insertion sort in place? Stable? Running time = ?
- Do you recognize this sort?
 - This is what we used for percolating binary heap elements.
Insertion Sort Characteristics

- In place and Stable
 - One extra location for Tmp
- Running time
 - Worst case is $O(N^2)$
 - reverse order input
 - must copy every element every time
 - Best case is $\Omega(N)$
 - in-order input
 - copy down stops with first comparison every time

Inversions

- An inversion is a pair of elements in wrong order
- By definition, a sorted array has no inversions
- So you can think of sorting as the process of removing inversions in the order of the elements

Inversions

- A single value out of place can cause several inversions

Reverse order

- All values out of place (reverse order) causes numerous inversions
Inversions

- Our simple sorting algorithms so far swap adjacent elements (explicitly or implicitly) and remove just 1 inversion at a time
 - Their running time is proportional to number of inversions in array
- Given N distinct keys, the maximum possible number of inversions is
 \[(n-1) + (n-2) + ... + 1 = \sum_{i=1}^{n-1} i = \frac{(n-1)(n)}{2}\]

Inversions and Adjacent Swap Sorts

- "Average" list will contain half the max number of inversions = \(\frac{(n-1)n}{4}\)
 - So the average running time of Insertion sort is \(\Theta(N^2)\)
- Any sorting algorithm that only swaps adjacent elements requires \(\Omega(N^2)\) time because each swap removes only one inversion