Hashing

CSE 373 - Data Structures
April 22, 2002
Readings and References

• **Reading**
 - Chapter 5, *Data Structures and Algorithm Analysis in C*, Weiss

• **Other References**
 - Hashing, *Introduction to Algorithms*, Cormen, Leiserson and Rivest
The need for speed

- Data structures we have looked at so far
 - Use comparison operations to find items
 - Need $O(N)$ or $O(\log N)$ time for Find and Insert
- In real world applications, N is typically between 100 and 100,000 (or more)
 - $\log N$ is between 6.6 and 16.6
- Hash tables are an abstract data type designed for $O(1)$ Find and Inserts
Fewer functions faster

• compare lists and stacks
 › by reducing the flexibility of what we are allowed to do, we can increase the performance of the remaining operations
 › insert(L,X) into a list versus push(S,X) onto a stack

• compare trees and hash tables
 › trees provide for known ordering of all elements
 › hash tables just let you (quickly) find an element
Limited Set of Hash Operations

- For many applications, a limited set of operations is all that is needed
 - Insert, Find, and Delete
 - Note that no ordering of elements is implied
- For example, a compiler needs to maintain information about the symbols in a program
 - user defined
 - language keywords
Direct Address Tables

• Direct addressing using an array is very fast

• Assume
 › keys are integers in the set $U=\{0,1,\ldots,m-1\}$
 › m is small
 › no two elements have the same key

• Then just store each element at the array location $\text{array}[\text{key}]$
 › search, insert, and delete are trivial
Direct Access Table

[U] (universe of keys)

[K] (Actual keys)

[Cormen, et al]
Direct Address Implementation

Delete(Table t, ElementType x)
 T[key[x]] = NULL

Insert(Table t, ElementType x)
 T[key[x]] = x

Find(Table t, Key k)
 return T[k]
An Issue

- The largest possible key in U may be much larger than the number of elements actually stored (|U| much greater than |K|)
 - the table is very sparse and wastes space
 - in worst case, table too large to have in memory
- If most keys in U are used
 - direct addressing can work very well
- If most keys in U are not used
 - need to map U to a smaller set closer in size to K
Mapping the Keys

[Diagram showing the mapping of keys to a hash table.]

- U: Set of keys
- K: Keys mapped to their corresponding positions in the table
- Table: Positions in the hash table

- Keys: 432, 72345, 928104, 62, 103673
- Mapped Keys: 254, 34563, 547204, 81
- Table Positions: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Key/Value: 2, 3, 5
Hashing schemes

• We want to store N items in a table of size M, at a location computed from the key K

• Hash function
 › Method for computing table index from key

• Collision resolution strategy
 › How to handle two keys that hash to the same index
Looking for an element

- Data records can be stored in arrays.
 - A[0] = {“CHEM 110”, Size 89}
- Class size for CSE 373?
 - Linear search the array – O(N) worst case time
 - Binary search - O(log N) worst case
Go directly to the element

- What if we could directly index into the array using the key?
 - \(A[\text{"CSE 373"}] = \{\text{Size 85}\} \)

- Main idea behind hash tables
 - Use a key based on some aspect of the data element to index directly into an array
 - \(O(1) \) time to access records
Indexing into hash table

- Need a fast *hash function* to convert the element key (string or number) to an integer (the *hash value*) (ie, map from U to index)
 - Then use this value to index into an array
 - Hash(“CSE 373”) = 157, Hash(“CSE 143”) = 101

- Output of the hash function
 - must always be less than size of array
 - must be as evenly distributed as possible
Choosing the hash function

• What properties do we want from a hash function?
 › Want universe of hash values to be distributed randomly to minimize collisions
 › Don’t want systematic nonrandom pattern in selection of keys to lead to systematic collisions
 › Want hash value to depend on all values in entire key and their positions
The key values are important

- Notice that one key issue with all the hash functions is that the actual content of the key set matters
- The elements in K (the keys that are used) are quite possibly a restricted subset of U, not just a random collection
 - variable names, words in the English language, reserved keywords, telephone numbers, etc, etc
Simple hashes

• It's possible to have very simple hash functions if you are certain of your keys

• For example,
 › suppose we know that the keys s will be real numbers uniformly distributed over $0 \leq s < 1$
 › Then a very fast, very good hash function is
 • $\text{hash}(s) = \text{floor}(s \cdot m)$
 • where m is the size of the table
very simple mapping

- $\text{hash}(s) = \lfloor s \cdot m \rfloor$ maps from $0 \leq s < 1$ to $0..m-1$
 - $m = 10$

Note the even distribution. There are collisions, but we will deal with them later.
Perfect hashing

- In some cases, it's possible to map a known set of keys uniquely to a set of index values.
- You must know every single key beforehand and be able to derive a function that works one-to-one (not necessarily onto).
integer key *modulo* table size

- One solution for a less constrained key set
 - modular arithmetic
- \(a \mod \text{size} \)
 - remainder when "a" is divided by "size"
 - in C this is written as \(r = a \% \text{size}; \)
 - If TableSize = 251
 - 408 mod 251 = 157
 - 352 mod 251 = 101
modulo mapping

- $a \ mod \ m$ maps from integers to 0..m-1
 - one to one? no
 - onto? yes
Hash function: mod

- If keys are integers, we can use the hash function:
 - Hash(key) = key mod TableSize

- Problem 1: What if TableSize is 11 and all keys are 2 repeated digits? (eg, 22, 33, …)
 - all keys map to the same index
 - Need to pick TableSize carefully: often, a prime number
Keys as Natural Numbers

- Most hash functions assume that the universe of keys is the natural numbers $\mathbb{N} = \{0,1,\ldots\}$
- Need to find a function to convert the actual key to a natural number quickly and effectively before or during the hash calculation
- Generally work with the ASCII character codes when converting strings to numbers
Hash Function : add chars

- If keys are strings can get an integer by adding up ASCII values of characters in key

  ```
  hashValue = 0;
  while (*key != '\0')
      hashValue += *key++;
  ```

- We are converting a very large number \((c_0c_1c_2c_3c_4)\) to a relatively small number \((c_0+c_1+c_2+c_3+c_4)\)
Hash must cover the whole table

- Problem 2: What if TableSize is 10,000 and all keys are 8 or less characters long?
 - chars have values between 0 and 127
 - Keys will hash only to positions 0 through 8*127 = 1016

- Need to distribute keys over the entire table or the extra space is wasted
Issues with hash add char

- Problems with adding up character values for string keys
 - If string keys are short, will not hash evenly to all of the hash table
 - Different character combinations hash to same value
 - “abc”, “bca”, and “cab” all add up to the same value
Hash function: chars as digits

- Suppose keys can use any of 26 characters plus blank (27 characters numbered 0 to 26)
 - these are digits in a base 27 representation of a number
 - can use 32 instead of 27 and shift left by 5 bits for fast multiplication, ie, consider the number to be a base 32 value

- A key conversion function for short strings
 - “abc” = \(1 \times 32^2 + 2 \times 32^1 + 3 = 1091 \)
 - “bca” = \(2 \times 32^2 + 3 \times 32^1 + 1 = 2243 \)
 - “cab” = \(3 \times 32^2 + 1 \times 32^1 + 2 = 6342 \)
Collisions

- A **collision** occurs when two different keys hash to the same value
 - E.g. For $TableSize = 17$, the keys 18 and 35 hash to the same value
 - $18 \mod 17 = 1$ and $35 \mod 17 = 1$
- Cannot store both data records in the same slot in array!
Collision Resolution

- **Separate Chaining**
 - Use data structure (such as a linked list) to store multiple items that hash to the same slot

- **Open addressing (or probing)**
 - search for empty slots using a second function and store item in first empty slot that is found
Resolution by Separate Chaining

- Each hash table cell holds pointer to linked list of records with same hash value (i, j, k in figure)
- **Collision**: Insert item into linked list
- To **Find** an item: compute hash value, then do Find on linked list
- Note that there are potentially as many as TableSize lists

![Diagram of hash table with entries for bug, zurk, and blog]
Why lists?

- Can use List ADT for Find/Insert/Delete in linked list
 - O(N) runtime where N is the number of elements in the particular chain
- Can also use Binary Search Trees
 - O(log N) time instead of O(N)
 - But the number of elements to search through should be small
 - Generally not worth the overhead of BSTs
Load Factor of a Hash Table

- Let $N =$ number of items to be stored
- **Load factor** $\lambda = \frac{N}{TableSize}$
 - $TableSize = 101$ and $N = 505$, then $\lambda = 5$
 - $TableSize = 101$ and $N = 10$, then $\lambda = 0.1$
- Average length of chained list $= \lambda$ and so average time for accessing an item $= O(1) + O(\lambda)$
 - Want λ to be close to 1 (i.e. $TableSize \approx N$)
 - But chaining continues to work for $\lambda > 1$
Resolution by Open addressing

- No links, all keys are in the table
 - reduced overhead saves space
- When searching for x, check locations $h_1(x), h_2(x), h_3(x), \ldots$ until either
 - x is found; or
 - we find an empty location (x not present)
- Various flavors of open addressing differ in which probe sequence they use
Cell Full? Keep looking.

- \(h_i(X) = (\text{Hash}(X) + F(i)) \mod \text{TableSize} \)
 - Define \(F(0) = 0 \)
- \(F \) is the collision resolution function. Some possibilities:
 - **Linear**: \(F(i) = i \)
 - **Quadratic**: \(F(i) = i^2 \)
 - **Double Hashing**: \(F(i) = i \cdot \text{Hash}_2(X) \)
Linear probing

• When searching for K, check locations $h(K)$, $h(K)+1$, $h(K)+2$, ... until either
 › K is found; or
 › we find an empty location (K not present)

• If table is very sparse, almost like separate chaining.

• When table starts filling, we get clustering but still constant average search time.

• Full table \Rightarrow infinite loop.
Primary clustering phenomenon

- Once a block of a few contiguous occupied positions emerges in table, it becomes a “target” for subsequent collisions
- As clusters grow, they also merge to form larger clusters.
- Primary clustering: elements that hash to different cells probe same alternative cells
Linear probing -- clustering

[R. Sedgewick]
Quadratic Probing

- When searching for \(x \), check locations \(h_1(x), h_1(x) + i^2, h_1(x) + i^3, \ldots \) until either
 - \(x \) is found; or
 - we find an empty location (\(x \) not present)
- No primary clustering but secondary clustering possible
Double hashing

• When searching for \(x \), check locations \(h_1(x) \), \(h_1(x) + h_2(x) \), \(h_1(x) + 2 * h_2(x) \), ... until either
 › \(x \) is found; or
 › we find an empty location (\(x \) not present)

• Must be careful about \(h_2(x) \)
 › Not 0 and not a divisor of \(M \)
 › eg, \(h_1(k) = k \mod m_1, \ h_2(k) = 1 + (k \mod m_2) \)
 › where \(m_2 \) is slightly less than \(m_1 \)
Double hashing

no collision

no collision

collision, try again at $h_1(x) + h_2(x)$

collision, try again at $h_1(z) + h_2(z)$, at $h_1(z) + 2h_2(z)$, at $h_1(z) + 3h_2(z)$, ...

[R. Sedgewick]
Rules of thumb

• Separate chaining is simple but wastes space…
• Linear probing uses space better, is fast when tables are sparse, interacts well with paging
• Double hashing is space efficient, fast (get initial hash and increment at the same time), needs careful implementation
• For average cost t
 › Max load for Linear Probe is $1 - \frac{1}{\sqrt{t}}$
 › Max load for Double Hashing is $1 - \frac{1}{t}$
Rehashing - rebuild the table

- Need to use *lazy deletion* if we use probing (why?)
 - Need to mark array slots as deleted after Delete
 - consequently, deleting doesn’t make the table any less full than it was before the delete
- If table gets too full ($\lambda \approx 1$) or if many deletions have occurred, running time gets too long and Inserts may fail
Rehashing

- Build a bigger hash table (of size $2 \times TableSize$) when λ exceeds a particular value
 - Go through old hash table, ignoring items marked deleted
 - Recompute hash value for each non-deleted key and put the item in new position in new table
 - Cannot just copy data from old table because the bigger table has a new hash function
- Running time is $O(N)$ but happens very infrequently
Caveats

• Hash functions are very often the cause of performance bugs.
• Hash functions often make the code not portable.
• Sometime a poor HF distribution-wise is faster overall.
• **Always check where the time goes**
Appendix
Positional Notation

- Each column in a number represents an additional power of the base number.
- In base ten:
 - $1 = 1 \times 10^0$, $30 = 3 \times 10^1$, $200 = 2 \times 10^2$.
- In base sixteen:
 - $1 = 1 \times 16^0$, $30 = 3 \times 16^1$, $200 = 2 \times 16^2$.
 - We use A, B, C, D, E, F to represent the numbers between 9_{16} and 10_{16}.
Binary, Hex, and Decimal

<table>
<thead>
<tr>
<th>$2^8=256_{10}$</th>
<th>$2^7=128_{10}$</th>
<th>$2^6=64_{10}$</th>
<th>$2^5=32_{10}$</th>
<th>$2^4=16_{10}$</th>
<th>$2^3=8_{10}$</th>
<th>$2^2=4_{10}$</th>
<th>$2^1=2_{10}$</th>
<th>$2^0=1_{10}$</th>
<th>Hex$_{16}$</th>
<th>Decimal$_{10}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>A</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>F</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1F</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7F</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>FF</td>
<td>255</td>
</tr>
</tbody>
</table>
Binary, Hex, and Decimal

<table>
<thead>
<tr>
<th>Binary₂</th>
<th>$16^4 = 65536_{10}$</th>
<th>$16^3 = 4096_{10}$</th>
<th>$16^2 = 256_{10}$</th>
<th>$16^1 = 16_{10}$</th>
<th>$16^0 = 1_{10}$</th>
<th>Decimal₁₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>1001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>10</td>
</tr>
<tr>
<td>1111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>15</td>
</tr>
<tr>
<td>1 0000</td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>1 1111</td>
<td></td>
<td></td>
<td>1</td>
<td>F</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>111 1111</td>
<td></td>
<td></td>
<td>7</td>
<td>F</td>
<td></td>
<td>127</td>
</tr>
<tr>
<td>1111 1111</td>
<td></td>
<td></td>
<td>F</td>
<td>F</td>
<td></td>
<td>255</td>
</tr>
</tbody>
</table>
Binary, Hex, and Decimal

<table>
<thead>
<tr>
<th>Binary<sub>2</sub></th>
<th>Hex<sub>16</sub></th>
<th>10<sup>3</sup>=1000<sub>10</sub></th>
<th>10<sup>2</sup>=100<sub>10</sub></th>
<th>10<sup>1</sup>=10<sub>10</sub></th>
<th>10<sup>0</sup>=1<sub>10</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td>A</td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1111</td>
<td>F</td>
<td></td>
<td></td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1 0000</td>
<td>10</td>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>1 1111</td>
<td>1F</td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>111 1111</td>
<td>7F</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1111 1111</td>
<td>FF</td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>