Hashing

The need for speed

• Data structures we have looked at so far
 › Use comparison operations to find items
 › Need $O(N)$ or $O(\log N)$ time for Find and Insert

• In real world applications, N is typically between 100 and 100,000 (or more)
 › $\log N$ is between 6.6 and 16.6

• Hash tables are an abstract data type designed for $O(1)$ Find and Inserts

Fewer functions faster

• compare lists and stacks
 › by reducing the flexibility of what we are allowed to do, we can increase the performance of the remaining operations
 › insert(L,X) into a list versus push(S,X) onto a stack

• compare trees and hash tables
 › trees provide for known ordering of all elements
 › hash tables just let you (quickly) find an element

Readings and References

• Reading
 › Chapter 5, *Data Structures and Algorithm Analysis in C*, Weiss

• Other References
 › Hashing, *Introduction to Algorithms*, Cormen, Leiserson and Rivest
Limited Set of Hash Operations

- For many applications, a limited set of operations is all that is needed
 - Insert, Find, and Delete
 - Note that no ordering of elements is implied
- For example, a compiler needs to maintain information about the symbols in a program
 - user defined
 - language keywords

Direct Address Tables

- Direct addressing using an array is very fast
- Assume
 - keys are integers in the set $U=\{0,1,…,m-1\}$
 - m is small
 - no two elements have the same key
- Then just store each element at the array location $\text{array}[\text{key}]$
 - search, insert, and delete are trivial

Direct Access Table

<table>
<thead>
<tr>
<th>U (universe of keys)</th>
<th>K (Actual keys)</th>
<th>data key</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9</td>
<td>0 2 3 4 5 6 8 9</td>
<td>table</td>
</tr>
</tbody>
</table>

Direct Address Implementation

Delete(Table t, ElementType x)

$T[\text{key}[x]] = \text{NULL}$

Insert(Table t, ElementType x)

$T[\text{key}[x]] = x$

Find(Table t, Key k)

return $T[k]$
An Issue

- The largest possible key in U may be much larger than the number of elements actually stored ($|U|$ much greater than $|K|$)
 - the table is very sparse and wastes space
 - in worst case, table too large to have in memory
- If most keys in U are used
 - direct addressing can work very well
- If most keys in U are not used
 - need to map U to a smaller set closer in size to K

Mapping the Keys

![Mapping the Keys Diagram]

Hashing schemes

- We want to store N items in a table of size M, at a location computed from the key K
- Hash function
 - Method for computing table index from key
- Collision resolution strategy
 - How to handle two keys that hash to the same index

Looking for an element

- Data records can be stored in arrays.
 - $A[0] = \{"CHEM 110", Size 89\}$
- Class size for CSE 373?
 - Linear search the array – $O(N)$ worst case time
 - Binary search - $O(\log N)$ worst case
Go directly to the element

- What if we could directly index into the array using the key?
 - $A["CSE 373"] = \{\text{Size 85}\}$
- Main idea behind hash tables
 - Use a key based on some aspect of the data element to index directly into an array
 - $O(1)$ time to access records

Indexing into hash table

- Need a fast *hash function* to convert the element key (string or number) to an integer (the *hash value*) (i.e., map from U to index)
 - Then use this value to index into an array
 - $\text{Hash}("CSE 373") = 157, \text{Hash}("CSE 143") = 101$
- Output of the hash function
 - must always be less than size of array
 - must be as evenly distributed as possible

Choosing the hash function

- What properties do we want from a hash function?
 - Want universe of hash values to be distributed randomly to minimize collisions
 - Don’t want systematic nonrandom pattern in selection of keys to lead to systematic collisions
 - Want hash value to depend on all values in entire key and their positions

The key values are important

- Notice that one key issue with all the hash functions is that the actual content of the key set matters
- The elements in K (the keys that are used) are quite possibly a restricted subset of U, not just a random collection
 - variable names, words in the English language, reserved keywords, telephone numbers, etc, etc
Simple hashes

- It's possible to have very simple hash functions if you are certain of your keys
- For example,
 - suppose we know that the keys s will be real numbers uniformly distributed over $0 \leq s < 1$
 - Then a very fast, very good hash function is
 - $\text{hash}(s) = \lfloor s \cdot m \rfloor$
 - where m is the size of the table

Perfect hashing

- In some cases it's possible to map a known set of keys uniquely to a set of index values
- You must know every single key beforehand and be able to derive a function that works one-to-one (not necessarily onto)

integer key modulo table size

- One solution for a less constrained key set
 - modular arithmetic
 - $a \mod \text{size}$
 - remainder when "a" is divided by "size"
 - in C this is written as $r = a \% \text{size}$;
 - If TableSize = 251
 - 408 mod 251 = 157
 - 352 mod 251 = 101
modulo mapping

• $a \mod m$ maps from integers to $0..m-1$
 › one to one? no
 › onto? yes

Hash function: mod

• If keys are integers, we can use the hash function:
 › $\text{Hash}(key) = key \mod \text{TableSize}$

• Problem 1: What if TableSize is 11 and all keys are 2 repeated digits? (eg, 22, 33, …)
 › all keys map to the same index
 › Need to pick TableSize carefully: often, a prime number

Keys as Natural Numbers

• Most hash functions assume that the universe of keys is the natural numbers $N=\{0,1,…\}$
• Need to find a function to convert the actual key to a natural number quickly and effectively before or during the hash calculation
• Generally work with the ASCII character codes when converting strings to numbers

Hash Function: add chars

• If keys are strings can get an integer by adding up ASCII values of characters in key
 \[
 \text{hashValue} = 0; \\
 \text{while (*key != ‘\0’)} \\
 \quad \text{hashValue} += *\text{key}++; \\
 \]
 \[
 \begin{array}{c|c|c|c|c|c|c|c|c}
 \text{character} & C & S & R & 3 & 7 & 3 & <\0> \\
 \text{ASCII value} & 67 & 83 & 69 & 32 & 51 & 51 & 0 \\
 \end{array}
 \]
• We are converting a very large number ($c_0c_1c_2c_3c_4$) to a relatively small number ($c_0+c_1+c_2+c_3+c_4$)
Hash must cover the whole table

- Problem 2: What if TableSize is 10,000 and all keys are 8 or less characters long?
 - chars have values between 0 and 127
 - Keys will hash only to positions 0 through 8*127 = 1016
- Need to distribute keys over the entire table or the extra space is wasted

Issues with hash add char

- Problems with adding up character values for string keys
 - If string keys are short, will not hash evenly to all of the hash table
 - Different character combinations hash to same value
 - “abc”, “bca”, and “cab” all add up to the same value

Hash function: chars as digits

- Suppose keys can use any of 26 characters plus blank (27 characters numbered 0 to 26)
 - these are digits in a base 27 representation of a number
 - can use 32 instead of 27 and shift left by 5 bits for fast multiplication, ie, consider the number to be a base 32 value
- A key conversion function for short strings
 - “abc” = 1*32^2 + 2*32^1 + 3 =1091
 - “bca” = 2*32^2 + 3*32^1 + 1 =2243
 - “cab” = 3*32^2 + 1*32^1 + 2 =6342

Collisions

- A collision occurs when two different keys hash to the same value
 - E.g. For TableSize = 17, the keys 18 and 35 hash to the same value
 - 18 mod 17 = 1 and 35 mod 17 = 1
- Cannot store both data records in the same slot in array!
Collision Resolution

- Separate Chaining
 - Use data structure (such as a linked list) to store multiple items that hash to the same slot
- Open addressing (or probing)
 - search for empty slots using a second function and store item in first empty slot that is found

Resolution by Separate Chaining

- Each hash table cell holds pointer to linked list of records with same hash value (i, j, k in figure)
- Collision: Insert item into linked list
- To Find an item: compute hash value, then do Find on linked list
- Note that there are potentially as many as TableSize lists

Why lists?

- Can use List ADT for Find/Insert/Delete in linked list
 - O(N) runtime where N is the number of elements in the particular chain
- Can also use Binary Search Trees
 - O(log N) time instead of O(N)
 - But the number of elements to search through should be small
 - generally not worth the overhead of BSTs

Load Factor of a Hash Table

- Let N = number of items to be stored
- Load factor $\lambda = \frac{N}{\text{TableSize}}$
 - TableSize = 101 and N = 505, then $\lambda = 5$
 - TableSize = 101 and N = 10, then $\lambda = 0.1$
- Average length of chained list = λ and so average time for accessing an item = O(1) + O(λ)
 - Want λ to be close to 1 (i.e. TableSize = N)
 - But chaining continues to work for $\lambda > 1$
Resolution by Open addressing

- No links, all keys are in the table
 - reduced overhead saves space
- When searching for \(X \), check locations \(h_1(X), h_2(X), h_3(X), \ldots \) until either
 - \(X \) is found; or
 - we find an empty location (\(X \) not present)
- Various flavors of open addressing differ in which probe sequence they use

Cell Full? Keep looking.

- \(h_1(X) = (\text{Hash}(X) + F(i)) \mod \text{TableSize} \)
 - Define \(F(0) = 0 \)
- \(F \) is the collision resolution function. Some possibilities:
 - Linear: \(F(i) = i \)
 - Quadratic: \(F(i) = i^2 \)
 - Double Hashing: \(F(i) = i \cdot \text{Hash}_2(X) \)

Linear probing

- When searching for \(K \), check locations \(h(K), h(K) + 1, h(K) + 2, \ldots \) until either
 - \(K \) is found; or
 - we find an empty location (\(K \) not present)
- If table is very sparse, almost like separate chaining.
- When table starts filling, we get clustering but still constant average search time.
- Full table \(\Rightarrow \) infinite loop.

Primary clustering phenomenon

- Once a block of a few contiguous occupied positions emerges in table, it becomes a “target” for subsequent collisions
- As clusters grow, they also merge to form larger clusters.
- Primary clustering: elements that hash to different cells probe same alternative cells
Linear probing -- clustering

- No collision
- Collision in small cluster
- Collision in large cluster

Quadratic Probing

- When searching for x, check locations $h_1(x)$, $h_1(x) + i^2$, $h_1(x) + i^3$, ... until either
 - x is found; or
 - we find an empty location (x not present)
- No primary clustering but secondary clustering possible

Double hashing

- When searching for x, check locations $h_1(x)$, $h_1(x) + h_2(x)$, $h_1(x) + 2h_2(x)$, ... until either
 - x is found; or
 - we find an empty location (x not present)
- Must be careful about $h_2(x)$
 - Not 0 and not a divisor of M
 - eg, $h_1(k) = k \mod m_1$, $h_2(k) = 1 + (k \mod m_2)$
 - where m_2 is slightly less than m_1

Double hashing

- When searching for z, check locations $h_1(z)$, $h_1(z) + h_2(z)$, $h_1(z) + 2h_2(z)$, $h_1(z) + 3h_2(z)$, ... until either
 - z is found; or
 - we find an empty location (z not present)
Rules of thumb

- Separate chaining is simple but wastes space…
- Linear probing uses space better, is fast when tables are sparse, interacts well with paging
- Double hashing is space efficient, fast (get initial hash and increment at the same time), needs careful implementation
- For average cost t
 - Max load for Linear Probe is $1 - \frac{1}{\sqrt{t}}$
 - Max load for Double Hashing is $1 - \frac{1}{t}$

Rehashing - rebuild the table

- Need to use *lazy deletion* if we use probing (why?)
 - Need to mark array slots as deleted after Delete
 - Consequently, deleting doesn’t make the table any less full than it was before the delete
- If table gets too full ($\lambda \approx 1$) or if many deletions have occurred, running time gets too long and Inserts may fail

Rehashing

- Build a bigger hash table (of size $2*TableSize$) when λ exceeds a particular value
 - Go through old hash table, ignoring items marked deleted
 - Recompute hash value for each non-deleted key and put the item in new position in new table
 - Cannot just copy data from old table because the bigger table has a new hash function
- Running time is $O(N)$ but happens very infrequently

Caveats

- Hash functions are very often the cause of performance bugs.
- Hash functions often make the code not portable.
- Sometime a poor HF distribution-wise is faster overall.
- Always check where the time goes
Positional Notation

- Each column in a number represents an additional power of the base number
- in base ten
 - \(1 = 1 \times 10^0, \ 30 = 3 \times 10^1, \ 200 = 2 \times 10^2\)
- in base sixteen
 - \(1 = 1 \times 16^0, \ 30 = 3 \times 16^1, \ 200 = 2 \times 16^2\)
 - we use A,B,C,D,E,F to represent the numbers between 9_{16} and 10_{16}

Positional Notation

- Each column in a number represents an additional power of the base number
- in base ten
 - \(1 = 1 \times 10^0, \ 30 = 3 \times 10^1, \ 200 = 2 \times 10^2\)
- in base sixteen
 - \(1 = 1 \times 16^0, \ 30 = 3 \times 16^1, \ 200 = 2 \times 16^2\)
 - we use A,B,C,D,E,F to represent the numbers between 9_{16} and 10_{16}

Binary, Hex, and Decimal

<table>
<thead>
<tr>
<th>N</th>
<th>N</th>
<th>N</th>
<th>N</th>
<th>N</th>
<th>N</th>
<th>Hex₁₆</th>
<th>Decimal₁₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>256</td>
<td>128</td>
<td>64</td>
<td>32</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>255</td>
<td>127</td>
<td>63</td>
<td>31</td>
<td>15</td>
<td>7</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>FF</td>
<td>255</td>
</tr>
<tr>
<td>11</td>
<td>1001</td>
<td>1010</td>
<td>1111</td>
<td>10000</td>
<td>11111</td>
<td>11111</td>
<td>11111</td>
</tr>
<tr>
<td>1111</td>
<td>1010</td>
<td>1111</td>
<td>10000</td>
<td>11111</td>
<td>11111</td>
<td>11111</td>
<td>10</td>
</tr>
<tr>
<td>1111</td>
<td>1010</td>
<td>1111</td>
<td>10000</td>
<td>11111</td>
<td>11111</td>
<td>11111</td>
<td>15</td>
</tr>
<tr>
<td>1111</td>
<td>1010</td>
<td>1111</td>
<td>10000</td>
<td>11111</td>
<td>11111</td>
<td>11111</td>
<td>16</td>
</tr>
<tr>
<td>1111</td>
<td>1010</td>
<td>1111</td>
<td>10000</td>
<td>11111</td>
<td>11111</td>
<td>11111</td>
<td>31</td>
</tr>
<tr>
<td>1111</td>
<td>1010</td>
<td>1111</td>
<td>10000</td>
<td>11111</td>
<td>11111</td>
<td>11111</td>
<td>127</td>
</tr>
<tr>
<td>1111</td>
<td>1010</td>
<td>1111</td>
<td>10000</td>
<td>11111</td>
<td>11111</td>
<td>11111</td>
<td>255</td>
</tr>
</tbody>
</table>

Appendix
Binary, Hex, and Decimal

<table>
<thead>
<tr>
<th>Binary 2</th>
<th>Hex</th>
<th>Binary 10</th>
<th>Hex 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>A</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>B</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>C</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>D</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>E</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>F</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

22-Apr-02 CSE 373 - Data Structures - 10 - Hashing