Splay Trees and B-Trees

CSE 373 - Data Structures
April 19, 2002

Readings and References

• Reading
 › Section 4.5-4.7, Data Structures and Algorithm Analysis in C, Weiss

• Other References

Self adjustment for better living

• Ordinary binary search trees have no balance conditions
 › what you get from insertion order is it

• Balanced trees like AVL trees enforce a balance condition when nodes change
 › tree is always balanced after an insert or delete

• Self adjusting trees get reorganized over time as nodes are accessed

Splay Trees

• Splay trees are tree structures that:
 • Are not perfectly balanced all the time
 • Use Find operations to balance the tree
 • future operations may run faster

• Based on the heuristic:
 • If X is accessed once, it is likely to be accessed again.

• The procedure:
 - After node X is accessed, perform “splaying” operations to bring it up to the root of the tree.
 - Do this in a way that leaves the tree more balanced as a whole
Splay Tree Terminology

- Let X be a non-root node with \(\geq 2 \) ancestors.
- P is its parent node.
- G is its grandparent node.

Zig

"Zig" means that a node is the outside child of its parent

Zag

"Zag" means that a node is the inside child of its parent, relative to the "zig" above it

Zig-Zig and Zig-Zag

"Zig-zig" and "Zig-zag"
Splay Tree Operations

1. Nodes must contain a parent pointer.

 element left right parent

2. When X is accessed, apply one of six rotation routines.
 - Single Rotations (X has a P (the root) but no G)
 - zig_left, zig_right
 - Double Rotations (X has both a P and a G)
 - zig_zig_left, zig_zig_right
 - zig_zag_left, zig_zag_right

Zig at depth 1

- “Zig” is just a single rotation, as in an AVL tree
- Let R be the node that was accessed (e.g. using Find)

\[\text{zig-right} \]

\[\begin{array}{c}
 A \\
 R \\
 Q \\
 C
\end{array} \rightarrow
\begin{array}{c}
 A \\
 R \\
 Q \\
 C
\end{array} \]

- Zig-right moves R to the top → faster access next time

Zig at depth 1

- Suppose Q is now accessed using Find

\[\text{zig-left} \]

\[\begin{array}{c}
 R \\
 Q \\
 C \\
 A \\
 B
\end{array} \rightarrow
\begin{array}{c}
 A \\
 B \\
 C \\
 R \\
 Q \\
 C
\end{array} \]

- Zig-left moves Q back to the top

Zig-Zag operation

- “Zig-Zag” consists of two rotations of the opposite direction (assume R is the node that was accessed)

\[\begin{array}{c}
 P \\
 D \\
 R \\
 Q \\
 A \\
 B \\
 C
\end{array} \rightarrow
\begin{array}{c}
 P \\
 D \\
 R \\
 Q \\
 A \\
 B \\
 C
\end{array} \]

- “Zig-Zag” splaying causes R to move to the top
Zig-Zig operation

- “Zig-Zig” consists of two single rotations of the same direction (R is the node that was accessed).

Again, due to “zig-zig” splaying, R has bubbled to the top.

Decreasing depth - "autobalance"

Analysis of Splay Trees

Examples suggest that splaying causes tree to get balanced. The actual analysis is rather advanced and is in Chapter 11.

Result of Analysis: Any sequence of M operations on a splay tree of size N takes O(M log N) time. So, the amortized running time for one operation is O(log N).

Beyond Binary Search Trees: Multi-Way Trees

- B-tree of order 3 has 2 or 3 children per node

- Search for 8

Restructuring a tree with splaying after accessing T (a–c) and then R (c–d).
B-Trees

B-Trees are multi-way search trees commonly used in database systems or other applications where data is stored externally on disks and keeping the tree shallow is important.

A B-Tree of order M has the following properties:

1. The root is either a leaf or has between 2 and M children.
2. All nonleaf nodes (except the root) have between $\lceil M/2 \rceil$ and M children.
3. All leaves are at the same depth.

All data records are stored at the leaves.
Leaves store between $\lceil M/2 \rceil$ and M data records.

B-Tree Details

Each internal node of a B-tree has:

- Between $\lceil M/2 \rceil$ and M children.
- up to $M-1$ keys $k_1 < k_2 < ... < k_{M-1}$

Keys are ordered so that:
$k_1 < k_2 < ... < k_{M-1}$

Properties of B-Trees

Children of each internal node are "between" the items in that node. Suppose subtree T_i is the ith child of the node:
- all keys in T_i must be between keys k_{i-1} and k_i
- i.e. $k_{i-1} \leq T_i < k_i$
- k_{i-1} is the smallest key in T_i
- All keys in first subtree $T_1 < k_i$
- All keys in last subtree $T_M \geq k_{M-1}$

Example: Searching in B-trees

- B-tree of order 3: also known as 2-3 tree (2 to 3 children)

Examples: Search for 9, 14, 12

Note: If leaf nodes are connected as a Linked List, B-tree is called a B+ tree – Allows sorted list to be accessed easily
Inserting and Deleting in B-Trees

- **Insert X:** Do a Find on X and find appropriate leaf node
 - If leaf node is not full, fill in empty slot with X
 - E.g. Insert 5
 - If leaf node is full, split leaf node and adjust parents up to root node
 - E.g. Insert 9

- **Delete X:** Do a Find on X and delete value from leaf node
 - May have to combine leaf nodes and adjust parents up to root node

Run Time Analysis of B-Tree Operations

- For a B-Tree of order M
 - Each internal node has up to M-1 keys to search
 - Each internal node has between $\lceil M/2 \rceil$ and M children
 - Depth of B-Tree storing N items is $O(\log \lceil M/2 \rceil N)$

- **Find:** Run time is:
 - $O(\log M)$ to binary search which branch to take at each node
 - Total time to find an item is $O(\text{depth} \times \log M) = O(\log N)$

Summary of Search Trees

- Problem with Search Trees: Must keep tree balanced to allow fast access to stored items
 - **AVL trees:** Insert/Delete operations keep tree balanced
 - **Splay trees:** Repeated Find operations produce balanced trees
 - **Multi-way search trees (e.g. B-Trees):** More than two children per node allows shallow trees; all leaves are at the same depth keeping tree balanced at all times