AVL Trees

CSE 373 - Data Structures
April 17, 2002
Readings and References

• Reading
 › Section 4.4, *Data Structures and Algorithm Analysis in C*, Weiss

• Other References
Binary Search Tree - Best Time

- All BST operations are $O(d)$, where d is tree depth
- minimum d is $\log N \leq d \leq \log (N+1)-1$ for a binary tree with N nodes
 - What is the best case tree?
 - What is the worst case tree?
- So, best case running time of BST operations is $O(\log N)$
Binary Search Tree - Worst Time

• Worst case running time is \(O(N) \)
 › What happens when you Insert elements in ascending order?
 • Insert: 2, 4, 6, 8, 10, 12 into an empty BST
 › Problem: Lack of “balance”:
 • compare depths of left and right subtree
 › Unbalanced degenerate tree
Balanced and unbalanced BST
Approaches to balancing trees

• Don't balance
 › likely to end up with some nodes very deep

• Strict balance on insert
 › The tree must always be balanced perfectly

• Pretty good balance on insert
 › Only allow a little out of balance

• Adjust on access
 › better balance through self adjustment
Balancing Trees

- Many algorithms exist for keeping trees balanced
 - Adelson-Velskii and Landis (AVL) trees
 - Splay trees and other self-adjusting trees
 - B-trees and other multiway search trees
Perfect Balance

- Want a complete tree after every operation
 - tree is full except possibly in the lower right
- This is expensive
 - For example, insert 2 in the tree on the left and then rebuild as a complete tree

![Diagram of AVL Tree with node 2 inserted and tree rebuilt as a complete tree.]
AVL - Pretty Good Balance

- AVL trees are height-balanced binary search trees
- **Balance factor** of a node
 - height(left subtree) - height(right subtree)
- An AVL tree has balance factor calculated at every node
 - For every node, heights of left and right subtree can differ by no more than 1
 - Store current heights in each node
Node Heights

height of node = h
balance factor = $h_{\text{left}} - h_{\text{right}}$
empty height = -1
Node Heights after Insert 7

height of node = h
balance factor = $h_{left} - h_{right}$
empty height = -1
Insert and Rotation in AVL Trees

• Insert operation may cause balance factor to become 2 or –2 for some node
 › only nodes on the path from insertion point to root node have possibly changed in height
 › So after the Insert, go back up to the root node by node, updating heights
 › If a new balance factor (the difference $h_{left}-h_{right}$) is 2 or –2, adjust tree by rotation around the node
Single Rotation in an AVL Tree
Insertions in AVL Trees

Let the node that needs rebalancing be α.

There are 4 cases:

Outside Cases (require single rotation):
1. Insertion into left subtree of left child of α.
2. Insertion into right subtree of right child of α.

Inside Cases (require double rotation):
3. Insertion into right subtree of left child of α.
4. Insertion into left subtree of right child of α.

The rebalancing is performed through four separate rotation algorithms.
AVL Insertion: Outside Case

Consider a valid AVL subtree

\[
\begin{array}{c}
 X \\
 k \\
 j \\
 Y \\
 Z \\
\end{array}
\]
AVL Insertion: **Outside Case**

Inserting into X destroys the AVL property at node j.
AVL Insertion: Outside Case

Do a “right rotation”
Single right rotation

Do a “right rotation”
Outside Case Completed

“Right rotation” done!
(“Left rotation” is mirror symmetric)

AVL property has been restored!
AVL Insertion: Inside Case

Consider a valid AVL subtree

```
  j
 /   \
 k   Z
|     |
X     Y
```
AVL Insertion: Inside Case

Inserting into Y destroys the AVL property at node j

Does “right rotation” restore balance?
AVL Insertion: **Inside Case**

“Right rotation” does not restore balance… now k is out of balance
AVL Insertion: **Inside Case**

Consider the structure of subtree Y…
AVL Insertion: **Inside Case**

Y = node i and subtrees V and W
AVL Insertion: **Inside Case**

We will do a left-right “double rotation” . . .
Double rotation: first rotation
Double rotation: second rotation

Now do a right rotation
Double rotation: second rotation

right rotation complete

Balance has been restored to the universe
Pros and Cons of AVL Trees

Arguments for AVL trees:

- Search is $O(\log N)$ since AVL trees are always balanced.
- The height balancing adds no more than a constant factor to the speed of insertion.

Arguments against using AVL trees:

1. Difficult to program & debug; more space for height info.
2. Asymptotically faster but can be slow in practice.
3. Most large searches are done in database systems on disk and use other structures (e.g. B-trees).
4. May be OK to have $O(N)$ for a single operation if total run time for many consecutive operations is fast (e.g. Splay trees).