Trees - Intro

CSE 373 - Data Structures
April 15, 2002

Why Do We Need Trees?

- Lists, Stacks, and Queues are linear relationships
- Information often contains hierarchical relationships
 › File directories or folders on your computer
 › Moves in a game
 › Employee hierarchies in organizations
- Can build a tree to support fast searching

Tree Jargon

- root
- nodes and edges
- leaves
- parent, children, siblings
- ancestors, descendants
- subtrees
- path, path length
- height, depth
More Tree Jargon

- **Length** of a path = number of edges
- **Depth** of a node N = length of path from root to N
- **Height** of node N = length of longest path from N to a leaf
- **Depth of tree** = depth of deepest node
- **Height of tree** = height of root

```
A
/   \
B     C
   /   \
  D     E
       / \
      F   
```

depth=0, height = 2

depth = 2, height=0

Definition and Tree Trivia

- A tree is a set of nodes
 - that is an empty set of nodes, or
 - has one node called the root from which zero or more trees (subtrees) descend
- A tree with N nodes always has N-1 edges
- Two nodes in a tree have at most one path between them

Paths

- Can a non-zero path from node N reach node N again?
 - No. Trees can never have cycles (loops)
- Does depth of nodes in a non-zero path increase or decrease?
 - Depth always increases in a non-zero path

Implementation of Trees

- One possible pointer-based Implementation
 - tree nodes with value and a pointer to each child
 - but how many pointers should we allocate space for?
- A more flexible pointer-based implementation
 - 1st Child / Next Sibling List Representation
 - Each node has 2 pointers: one to its first child and one to next sibling
 - Can handle arbitrary number of children
Application: Arithmetic Expression Trees

Example Arithmetic Expression:

\[A + (B \times (C / D)) \]

How would you express this as a tree?

Application: Arithmetic Expression Trees

Example Arithmetic Expression:

\[A + (B \times (C / D)) \]

Tree for the above expression:

- Used in most compilers
- No parenthesis need – use tree structure
- Can speed up calculations e.g. replace / node with C/D if C and D are known
- Calculate by traversing tree (how?)

Traversing Trees

- Preorder: Node, then Children
 \[+ A \times B / C D \]
- Inorder: Left child, Node, Right child
 \[A + B \times C / D \]
- Postorder: Children, then Node
 \[A B C D / \times + \]

Binary Trees

- Every node has at most two children
 - Most popular tree in computer science
 - Easy to implement, fast in operation
- Given N nodes, what is the minimum depth of a binary tree?
 - At depth d, you can have \(N = 2^d \) to \(2^{d+1} - 1 \) nodes
 - minimum depth d is: \(\log N \leq d \leq \log(N+1) - 1 \) or \(\Theta(\log N) \)
Minimum depth vs node count

- At depth d, you can have $N = 2^d$ to $2^{d+1} - 1$ nodes
- minimum depth d is $\log N \leq d \leq \log(N+1)-1$ or $\Theta(\log N)$

$d=2$

$N=2^2$ to 2^3-1 (i.e., 4 to 7 nodes)

Maximum depth vs node count

- What is the maximum depth of a binary tree?
 - Degenerate case: Tree is a linked list!
 - Maximum depth = $N-1$

Goal: Would like to keep depth at around $\log N$ to get better performance than linked list for operations like Find

A degenerate tree

A linked list with high overhead and few redeeming characteristics

Binary Search Trees

- Binary search trees are binary trees in which
 - all values in the node’s left subtree are less than node value
 - all values in the node’s right subtree are greater than node value

Operations:
- Find, FindMin, FindMax, Insert, Delete
Operations on Binary Search Trees

- How would you implement these?
 - Recursive definition of binary search trees allows recursive routines
 - Position `FindMin(Tree T)`
 - Position `FindMax(Tree T)`
 - Position `Find(Tree T, ElementType X)`
 - `Tree Insert(Tree T, ElementType X)`
 - `Tree Delete(Tree T, ElementType X)`

Insert Operation

- `Tree Insert(Tree T, ElementType X)`
 - Do a “Find” operation for X
 - If X is found → update duplicates counter
 - Else, “Find” stops at a NULL pointer
 - Insert Node with X there
- Example: Insert 95

Delete Operation

- Delete is a bit trickier…Why?
- Suppose you want to delete 10
- Strategy:
 - Find 10
 - Delete the node containing 10
- Problem: When you delete a node, what do you replace it by?
Delete Operation

- Problem: When you delete a node, what do you replace it by?
- Solution:
 - If it has no children, by NULL
 - If it has 1 child, by that child
 - If it has 2 children, by the node with the smallest value in its right subtree
- Examples:
 - Delete 5
 - Delete 24
 - Delete 10 (note: recursive deletion)

Delete “5” - No children

Find 5 node
Then Free the 5 node and NULL the pointer to it

Delete “24” - One child

Find 24 node
Then Free the 24 node and replace the pointer to it with a pointer to its child

Delete “10” - two children

Find 10,
Copy the smallest value in right subtree into the node
Then recursively Delete node with smallest value in right subtree
Note: it does not have two children
Delete “11” - One child

Remember 11 node

Then Free the 11 node and replace the pointer to it with a pointer to its child