Analysis of Algorithms

CSE 373 - Data Structures
April 10, 2002
Readings and References

• Reading
 › Chapter 2, *Data Structures and Algorithm Analysis in C*, Weiss

• Other References
Asymptotic Behavior

- The “asymptotic” performance as $N \to \infty$, regardless of what happens for small input sizes N, is generally most important.
- Performance for small input sizes may matter in practice, if you are sure that small N will be common forever.
- We will compare algorithms based on how they scale for large values of N.
Big-Oh Notation

• The growth rate of the time or space required in relation to the size of the input N is generally the critical issue

• T(N) is said to be O(f(N)) if
 › there are positive constants c and n₀ such that T(N) ≤ cf(N) for N ≥ n₀.
 › i.e., f(N) is an upper bound on T(N) for N ≥ n₀

• T(N) is “big-oh” of f(N) or "order" f(N)
\(T(x) = 2x^2 + x + 1 \) is \(O(x^2) \)
Big-Oh Notation

- Suppose $T(N) = 50N$
 - $T(N) = O(N)$
 - Take $c = 50$ and $n_0 = 1$

- Suppose $T(N) = 50N+11$
 - $T(N) = O(N)$
 - $T(N) \leq 50N+11N = 61N$ for $N \geq 1$. So, $c = 61$ and $n_0 = 1$ works
The common comparisons

<table>
<thead>
<tr>
<th>Name</th>
<th>Big-Oh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Log log</td>
<td>$O(\log \log N)$</td>
</tr>
<tr>
<td>Logarithmic</td>
<td>$O(\log N)$</td>
</tr>
<tr>
<td>Log squared</td>
<td>$O((\log N)^2)$</td>
</tr>
<tr>
<td>Linear</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>$N \log N$</td>
<td>$O(N \log N)$</td>
</tr>
<tr>
<td>Quadratic</td>
<td>$O(N^2)$</td>
</tr>
<tr>
<td>Cubic</td>
<td>$O(N^3)$</td>
</tr>
<tr>
<td>Exponential</td>
<td>$O(2^N)$</td>
</tr>
</tbody>
</table>

Increasing cost

Polynomial time
Exponential Growth swamps everything else

n = 1:100;
y1 = n-n+1;
y2 = log2(n);
y3 = n;
y4 = n.*log2(n);
y5 = n.^2;
y6 = 2.^n;

from bigo.m
Bounds

- Upper bound (O) is not the only bound of interest
- Big-Oh (O), Little-Oh (o), Omega (Ω), and Theta (Θ):
 - (Fraternities of functions…)
 - Examples of time and space efficiency analysis
Big-Oh Notation

TA(N) = O(N^2)

TA(N) is O(N^2) because 50N ≤ N^2 for N ≥ 50.

So N^2 is an upper bound. But it's not a very tight upper bound.
Big-Oh and Omega

- **T(N) = O(f(N))** if there are positive constants c and n₀ such that $T(N) \leq cf(N)$ for $N \geq n₀$.
 - O(f(N)) is an upper bound for T(N)
 - 100 log N, $N^{0.9}$, 0.0001 N, $2^{100}N + \log N$ are O(N)

- **T(N) = Ω(f(N))** if there are positive constants c and n₀ such that $T(N) \geq cf(N)$ for $N \geq n₀$.
 - Ω(f(N)) is a lower bound for T(N)
 - 2^N, $N^{\log N}$, $N^{1.2}$, 0.0001 N, N + log N are Ω(N)
Theta and Little-Oh

- \(T(N) = \Theta(f(N)) \) iff \(T(N) = O(f(N)) \) and \(T(N) = \Omega(f(N)) \)
 - \(\Theta(f(N)) \) is a tight bound, upper and lower
 - \(0.0001N, 2^{100}N + \log N \) are all \(= \Theta(N) \)
- \(T(N) = o(f(N)) \) iff \(T(N) = O(f(N)) \) and \(T(N) \neq \Theta(f(N)) \)
 - \(f(N) \) grows faster than \(T(N) \)
 - \(100 \log N, N^{0.9}, \sqrt{N}, 17 \) are all \(= o(N) \)
For large N and ignoring constant factors

- $T(N) = O(f(N))$
 - means $T(N)$ is less than or equal to $f(N)$
 - Upper bound
- $T(N) = \Omega(f(N))$
 - means $T(N)$ is greater than or equal to $f(N)$
 - Lower bound
- $T(N) = \Theta(f(N))$
 - means $T(N)$ is equal to $f(N)$
 - “Tight” bound, same growth rate
- $T(N) = o(f(N))$
 - means $T(N)$ is strictly less than $f(N)$
 - Strict upper bound: $f(N)$ grows faster than $T(N)$
Big-Oh Analysis of iterative sum function

Find the sum of the first num integers stored in array v. Assume num ≤ size of v.

```
int sum ( int v[ ], int num) {
    int temp_sum = 0, i;                      //1
    for ( i = 0; i < num; i++ )               //2
        temp_sum = temp_sum + v[i] ;          //3
    return temp_sum;                          //4
}
```

• lines 1, 3, and 4 take fixed (constant) amount of time
• line 2: i goes from 0 to num-1= num iterations
• Running time = constant + (num)*constant = O(num)
• Actually, Θ(num) because there are no fast cases
Big-Oh Analysis of recursive sum function

Recursive function to find the sum of first num integers in v:

```c
int sum ( int v[ ], int num){
    if (num == 0) return 0; // constant time here
    else return v[num-1] + sum(v, num-1); // constant + T(num-1)
}
```

- Let T(num) be the running time of sum
- Then, T(num) = constant + T(num-1)
- = 2*constant + T(num-2) =...= num*constant + constant
- = Θ(num) (same as iterative algorithm!)
Common Recurrence Relations

- Common recurrence relations in analysis of algorithms:
 - \(T(N) = T(N-1) + \Theta(1) \Rightarrow T(N) = O(N) \)
 - \(T(N) = T(N-1) + \Theta(N) \Rightarrow T(N) = O(N^2) \)
 - \(T(N) = T(N/2) + \Theta(1) \Rightarrow T(N) = O(\log N) \)
 - \(T(N) = 2T(N/2) + \Theta(N) \Rightarrow T(N) = O(N \log N) \)
 - \(T(N) = 4T(N/2) + \Theta(N) \Rightarrow T(N) = O(N^2) \)
Big-Oh Analysis of Recursive Algorithms

• To derive, expand the right side and count
• Note: Multiplicative constants matter in recurrence relations:
 \[T(N) = 4T(N/2) + \Theta(N) \text{ is } O(N^2), \text{ not } O(N \log N)! \]
• You will see these again later
 \[\text{you will only need to know a few specific relations and their big-oh answers} \]
Recursion

• Recall the example using Fibonacci numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, …

› First two are defined to be 1
› Rest are sum of preceding two
› \(F_n = F_{n-1} + F_{n-2} \) (n > 1)
Recursive Fibonacci Function

```c
int fib(int N) {
    if (N < 0) return 0;    // invalid input
    if (N == 0 || N == 1) return 1;    // base cases
    else return fib(N-1)+fib(N-2);
}
```

- Running time $T(N) =$?
Recursive Fibonacci Analysis

- \texttt{int fib(int N) \{}

 \hspace{1em} \texttt{if (N < 0) return 0;} \quad \text{\(\text{time} = 1\) for \((N < 0)\)}

 \hspace{1em} \texttt{if (N == 0 || N == 1) return 1;} \quad \text{\(\text{time} = 3\)}

 \hspace{1em} \texttt{else return fib(N-1)+fib(N-2);} \quad \text{\(\text{T(N-1)+T(N-2)+1}\)}

- \textbf{Running time} \(T(N) = T(N-1) + T(N-2) + 5\)

- Using \(F_n = F_{n-1} + F_{n-2}\) we can show by induction that \(T(N) \geq F_N\). We can also show by induction that \(F_N \geq \left(\frac{3}{2}\right)^N\)

- Therefore, \(T(N) \geq \left(\frac{3}{2}\right)^N\)

 \(\text{\(\rightarrow\) Exponential running time!}\)
Iterative Fibonacci Function

```c
int fib_iter(int N) {
    int fib0 = 1, fib1 = 1, fibj = 1;
    if (N < 0) return 0;  //invalid input
    for (int j = 2; j <= N; j++) { //all fib nos. up to N
        fibj = fib0 + fib1;
        fib0 = fib1;
        fib1 = fibj;
    }
    return fibj;
}
```

• Running time = ?
Iterative Fibonacci Analysis

```c
int fib_iter(int N) {
    int fib0 = 1, fib1 = 1, fibj = 1;
    if (N < 0) return 0; //invalid input
    for (int j = 2; j <= N; j++) {
        fibj = fib0 + fib1;
        fib0 = fib1;
        fib1 = fibj;
    }
    return fibj;
}
```

- **Running time** $T(N) = \text{constant} + (N-1)\cdot\text{constant}$
- $T(N) = \Theta(N)$
 - Exponentially faster than recursive Fibonacci
Appendix
Matlab - bigo.m

% bigO functions
% calculate and plot several functions used in comparing growth rates

figure

n = 1:100; % the x axis
y1 = n-n+1; % O(1)
y2 = log2(n); % O(log2(n))
y3 = n; % O(n)
y4 = n.*log2(n); % O(nlog2(n))
y5 = n.^2; % O(n^2)
y6 = 2.^n; % O(2^n)

plot(n,y1,'y','LineWidth',2)
hold on
plot(n,y2,'r','LineWidth',2)
plot(n,y3,'g','LineWidth',2)
plot(n,y4,'b','LineWidth',2)
plot(n,y5,'m','LineWidth',2)
plot(n,y6,'c','LineWidth',2)

legend('O(1)','O(log_2 n)','O(n)','O(n log_2 n)','O(n^2)','O(2^n)',2)
hold off