Fundamentals

CSE 373 - Data Structures
April 8, 2002
Readings and References

• Reading
 › Chapters 1-2, *Data Structures and Algorithm Analysis in C*, Weiss

• Other References
Mathematical Background

• Today, we will review:
 › Logs and exponents
 › Series
 › Recursion
 › Motivation for Algorithm Analysis
Powers of 2

- Many of the numbers we use will be powers of 2
- Binary numbers (base 2) are easily represented in digital computers
 - each "bit" is a 0 or a 1
 - \(2^0=1, 2^1=2, 2^2=4, 2^3=8, 2^4=16, 2^8=256, \ldots\)
 - an n-bit wide field can hold \(2^n\) positive integers:
 - \(0 \leq k \leq 2^n-1\)
Unsigned binary numbers

- Each bit position represents a power of 2
- For unsigned numbers in a fixed width field
 - the minimum value is 0
 - the maximum value is $2^n - 1$, where n is the number of bits in the field
- Fixed field widths determine many limits
 - 5 bits = 32 possible values ($2^5 = 32$)
 - 10 bits = 1024 possible values ($2^{10} = 1024$)
Binary, Hex, and Decimal

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
<th>2^7=128</th>
<th>2^6=64</th>
<th>2^5=32</th>
<th>2^4=16</th>
<th>2^3=8</th>
<th>2^2=4</th>
<th>2^1=2</th>
<th>2^0=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0x1</td>
<td>0 0 0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0x2</td>
<td>0 0 0 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0x3</td>
<td>1 0 0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0x4</td>
<td>0 0 0 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0x5</td>
<td>0 0 1 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0x6</td>
<td>0 0 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0x7</td>
<td>0 1 0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0x8</td>
<td>0 1 0 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0x9</td>
<td>1 0 0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0xA</td>
<td>1 0 0 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0xB</td>
<td>1 0 1 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0xC</td>
<td>1 0 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0xD</td>
<td>1 1 0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0xE</td>
<td>1 1 0 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0xF</td>
<td>1 1 1 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0x10</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0x11</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0x12</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>0x13</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0x14</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>0x15</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>0x16</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>0x17</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>0x18</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>0x19</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>0x1A</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>0x1B</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>0x1C</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>0x1D</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>0x1E</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>0x1F</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>0x20</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>0x21</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>0x22</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>0x23</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>0x24</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>0x25</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>0x26</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>0x27</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>0x28</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>41</td>
<td>0x29</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>42</td>
<td>0x2A</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>43</td>
<td>0x2B</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>44</td>
<td>0x2C</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>45</td>
<td>0x2D</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>46</td>
<td>0x2E</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>47</td>
<td>0x2F</td>
<td>1 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Logs and exponents

- Definition: \(\log_2 x = y \) means \(x = 2^y \)
 - the log of \(x \), base 2, is the value \(y \) that gives \(x = 2^y \)
 - \(8 = 2^3 \), so \(\log_2 8 = 3 \)
 - \(65536 = 2^{16} \), so \(\log_2 65536 = 16 \)

- Notice that \(\log_2 x \) tells you how many bits are needed to hold \(x \) values
 - 8 bits holds 256 numbers: 0 to \(2^8 - 1 = 0 \) to 255
 - \(\log_2 256 = 8 \)
2^x and $\log_2 x$

$x = 0:.1:4$

$y = 2^x$

plot($x,y,'r'$)

hold on

plot($y,x,'g'$)

plot($y,y,'b'$)
2^x and $\log_2 x$

$x = 0:10$

$y = 2^x$

plot(x,y,'r')

hold on

plot(y,x,'g')

plot(y,y,'b')
Example: $\log_2 x$ and tree depth

- 7 items in a binary tree, $3 = \lceil \log_2 7 \rceil + 1$ levels
Properties of logs (of the mathematical kind)

• We will assume logs to base 2 unless specified otherwise

• \(\log AB = \log A + \log B \)

 › \(A = 2^{\log_2 A} \) and \(B = 2^{\log_2 B} \)

 › \(AB = 2^{\log_2 A} \cdot 2^{\log_2 B} = 2^{\log_2 A + \log_2 B} \)

 › so \(\log_2 AB = \log_2 A + \log_2 B \)

 › note: \(\log AB \neq \log A \cdot \log B \)
Other log properties

• \(\log \frac{A}{B} = \log A - \log B \)
• \(\log (A^B) = B \log A \)
• \(\log \log X < \log X < X \) for all \(X > 0 \)
 › \(\log \log X = Y \) means \(2^{2^Y} = X \)
 › \(\log X \) grows slower than \(X \)
 • called a “sub-linear” function
A log is a log is a log

- Any base x log is equivalent to base 2 log within a constant factor

\[
B = 2^{\log_2 B} \\
x = 2^{\log_2 x}
\]

\[
\begin{align*}
\log_x B &= \log_x B \\
x^{\log_x B} &= B \\
(2^{\log_2 x})^{\log_x B} &= 2^{\log_2 B} \\
2^{\log_2 x \log_x B} &= 2^{\log_2 B} \\
\log_2 x \log_x B &= \log_2 B \\
\log_x B &= \frac{\log_2 B}{\log_2 x}
\end{align*}
\]
Arithmetic Series

- \(S(N) = 1 + 2 + \ldots + N = \sum_{i=1}^{N} i \)

- The sum is
 - \(S(1) = 1 \)
 - \(S(2) = 1 + 2 = 3 \)
 - \(S(3) = 1 + 2 + 3 = 6 \)

- \(\sum_{i=1}^{N} i = \frac{N(N+1)}{2} \) Why is this formula useful?
Quickly Algorithm Analysis

• Consider the following program segment:

 for (i = 1; i <= N; i++)
 for (j = 1; j <= i; j++)
 printf(“Hello\n”);

• How many times is “printf” executed?
 › Or, How many Hello’s will you see?
What is actually being executed?

- The program segment being analyzed:

  ```c
  for (i = 1; i <= N; i++)
      for (j = 1; j <= i; j++)
          printf("Hello\n");
  ```

- Inner loop executes “printf” i times in the ith iteration

 › j goes from 1 to i

- There are N iterations in the outer loop

 › i goes from 1 to N
Lots of hellos

• Total number of times “printf” is executed = \[1 + 2 + 3 + \ldots = \sum_{i=1}^{N} i = \frac{N(N+1)}{2}\]

• Congratulations - You’ve just analyzed your first program!
 › Running time of the program is proportional to \[N(N+1)/2\] for all \(N\)
 › Proportional to \(N^2\)
Recursion

- Classic (bad) example: Fibonacci numbers F_n

 - First two are defined to be 1
 - Rest are sum of preceding two
 - $F_n = F_{n-1} + F_{n-2}$ (n > 1)

Leonardo Pisano
Fibonacci (1170-1250)
Recursive Procedure for Fibonacci Numbers

```c
int fib(int i) {
    if (i < 0) return 0;
    if (i == 0 || i == 1)
        return 1;
    else
        return fib(i-1)+fib(i-2);
}
```

- Easy to write: looks like the definition of F_n
- But, can you spot the big problem?
Recursive Calls of Fibonacci Procedure

- Re-computes $\text{fib}(N-i)$ multiple times!
Iterative Procedure for Fibonacci Numbers

```c
int fib_iter(int i) {
    int fib0 = 1, fib1 = 1, fibj = 1;
    if (i < 0) return 0;
    for (int j = 2; j <= i; j++) {
        fibj = fib0 + fib1;
        fib0 = fib1;
        fib1 = fibj;
    }
    return fibj;
}
```

- More variables and more bookkeeping but avoids repetitive calculations and saves time.
Recursion Summary

• Recursion may simplify programming, but beware of generating large numbers of calls
 › Function calls can be expensive in terms of time and space
• Be sure to get the base case(s) correct!
• Each step must get you closer to the base case
Motivation for Algorithm Analysis

• Suppose you are given two algos A and B for solving a problem
• The running times $T_A(N)$ and $T_B(N)$ of A and B as a function of input size N are given

Which is better?
More Motivation

• For large N, the running time of A and B is:

$T_A(N) = 50N$

$T_B(N) = N^2$

Now which algorithm would you choose?
Asymptotic Behavior

- The “asymptotic” performance as \(N \to \infty \), regardless of what happens for small input sizes \(N \), is generally most important.
- Performance for small input sizes may matter in practice, if you are sure that small \(N \) will be common forever.
- We will compare algorithms based on how they scale for large values of \(N \).