Fundamentals

CSE 373 - Data Structures
April 8, 2002

Readings and References

- Reading
 - Chapters 1-2, *Data Structures and Algorithm Analysis in C*, Weiss

- Other References

Mathematical Background

- Today, we will review:
 - Logs and exponents
 - Series
 - Recursion
 - Motivation for Algorithm Analysis

Powers of 2

- Many of the numbers we use will be powers of 2
- Binary numbers (base 2) are easily represented in digital computers
 - each "bit" is a 0 or a 1
 - $2^0=1$, $2^1=2$, $2^2=4$, $2^3=8$, $2^4=16$, $2^8=256$, ...
 - an n-bit wide field can hold 2^n positive integers:
 - $0 \leq k \leq 2^n-1$
Unsigned binary numbers

- Each bit position represents a power of 2
- For unsigned numbers in a fixed width field
 - the minimum value is 0
 - the maximum value is $2^n - 1$, where n is the number of bits in the field
- Fixed field widths determine many limits
 - 5 bits = 32 possible values ($2^5 = 32$)
 - 10 bits = 1024 possible values ($2^{10} = 1024$)

Binary, Hex, and Decimal

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Hex$_{16}$</th>
<th>Decimal$_{10}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0x10</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0x10</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0xF</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0x10</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0x10</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0x10</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0x10</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0x10</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0x10</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0x10</td>
<td>16</td>
</tr>
</tbody>
</table>

Logs and exponents

- Definition: $\log_2 x = y$ means $x = 2^y$
 - the log of x, base 2, is the value y that gives $x = 2^y$
 - $8 = 2^3$, so $\log_2 8 = 3$
 - $65536 = 2^{16}$, so $\log_2 65536 = 16$
- Notice that $\log_2 x$ tells you how many bits are needed to hold x values
 - 8 bits holds 256 numbers: 0 to $2^8 - 1 = 0$ to 255
 - $\log_2 256 = 8$
Example: $\log_2 x$ and tree depth

- 7 items in a binary tree, $3 = \lfloor \log_2 7 \rfloor + 1$ levels

Properties of logs (of the mathematical kind)

- We will assume logs to base 2 unless specified otherwise
- $\log AB = \log A + \log B$
 - $A = 2^{\log_2 A}$ and $B = 2^{\log_2 B}$
 - $AB = 2^{\log_2 A} \cdot 2^{\log_2 B} = 2^{\log_2 A + \log_2 B}$
 - so $\log_2 AB = \log_2 A + \log_2 B$

 - note: $\log AB \neq \log A \cdot \log B$

Other log properties

- $\log A/B = \log A - \log B$
- $\log (A^B) = B \log A$
- $\log \log X < \log X < X$ for all $X > 0$
 - $\log \log X = Y$ means $2^{2^Y} = X$
 - $\log X$ grows slower than X
 - called a “sub-linear” function
A log is a log is a log

- Any base x log is equivalent to base 2 log within a constant factor

\[
\log_x B = \log_2 B \\
\frac{x}{\log_2 x} = 2^\log_2 B \\
\log_x B = 2^{\log_2 B} \\
\log_2 x \log_x B = \log_2 B \\
\log_x B = \frac{\log_2 B}{\log_2 x}
\]

Arithmetic Series

- $S(N) = 1 + 2 + \ldots + N = \sum_{i=1}^{N} i$
- The sum is
 - $S(1) = 1$
 - $S(2) = 1 + 2 = 3$
 - $S(3) = 1 + 2 + 3 = 6$

\[
\sum_{i=1}^{N} i = \frac{N(N+1)}{2}
\]

Why is this formula useful?

Quickly Algorithm Analysis

- Consider the following program segment:

  ```c
  for (i = 1; i <= N; i++)
    for (j = 1; j <= i; j++)
      printf("Hello\n");
  ```
- How many times is “printf” executed?
 - Or, How many Hello’s will you see?

 - The program segment being analyzed:
    ```c
    for (i = 1; i <= N; i++)
      for (j = 1; j <= i; j++)
        printf("Hello\n");
    ```
 - Inner loop executes “printf” i times in the i^{th} iteration
 - j goes from 1 to i
 - There are N iterations in the outer loop
 - i goes from 1 to N
Lots of hellos

- Total number of times “printf” is executed = \(1 + 2 + 3 + \ldots = \sum_{i=1}^{N} i = \frac{N(N+1)}{2}\)
- Congratulations - You’ve just analyzed your first program!
 - Running time of the program is proportional to \(N(N+1)/2\) for all \(N\)
 - Proportional to \(N^2\)

Recursion

- Classic (bad) example: Fibonacci numbers \(F_n\)
 - First two are defined to be 1
 - Rest are sum of preceding two
 - \(F_n = F_{n-1} + F_{n-2} \quad (n > 1)\)

Leonardo Pisano
Fibonacci (1170-1250)

Recursive Procedure for Fibonacci Numbers

```c
int fib(int i) {
    if (i < 0) return 0;
    if (i == 0 || i == 1)
        return 1;
    else
        return fib(i-1)+fib(i-2);
}
```

- Easy to write: looks like the definition of \(F_n\)
- But, can you spot the big problem?

Recursive Calls of Fibonacci Procedure

- Re-computes \(fib(N-i)\) multiple times!
Iterative Procedure for Fibonacci Numbers

```c
int fib_iter(int i) {
    int fib0 = 1, fib1 = 1, fibj = 1;
    if (i < 0) return 0;
    for (int j = 2; j <= i; j++) {
        fibj = fib0 + fib1;
        fib0 = fib1;
        fib1 = fibj;
    }
    return fibj;
}
```

More variables and more bookkeeping but avoids repetitive calculations and saves time.

Recursion Summary

- Recursion may simplify programming, but beware of generating large numbers of calls
 - Function calls can be expensive in terms of time and space
- Be sure to get the base case(s) correct!
- Each step must get you closer to the base case

Motivation for Algorithm Analysis

- Suppose you are given two algos A and B for solving a problem
- The running times $T_A(N)$ and $T_B(N)$ of A and B as a function of input size N are given

More Motivation

- For large N, the running time of A and B is:

 $T_A(N) = 50N$
 $T_B(N) = N^2$

Now which algorithm would you choose?
Asymptotic Behavior

- The “asymptotic” performance as \(N \to \infty \), regardless of what happens for small input sizes \(N \), is generally most important.
- Performance for small input sizes may matter in practice, if you are sure that small \(N \) will be common forever.
- We will compare algorithms based on how they scale for large values of \(N \).