Graph Searching

CSE 373
Data Structures
Lecture 20

Graph Searching

- Find Properties of Graphs
 - Connected components
 - Bipartite structure
 - Biconnected components
- Applications
 - Alternating paths for matching
 - Garbage collection – used in Java run time system
 - Finding dead code
 - Finding the web graph – used by Google and others

Depth First Search Algorithm

- Recursive marking algorithm
- Initially every vertex is unmarked

```
DFS(i: vertex)
mark i;
for each j adjacent to i do
  if j is unmarked then DFS(j)
end(DFS)
```

Example of Depth First Search

```
1 2 3
6 7 4
```

Example Step 2

```
1 2 3
6 7 4
```

Example Step 3

```
1 2 3
6 7 4
```
Example Step 4

Example Step 5

Example Step 6

Example Step 7

Example Step 8

Example Step 9
Example Step 16

DFS(1)

Connected Components

3 connected components

Connected Components

3 connected components are labeled

Depth-first Search for Labeling Connected components

Main {
 i : integer
 for i = 1 to n do M[i] := 0;
 label := 1;
 for i = 1 to n do
 if M[i] = 0 then DFS(G,M,i,label);
 label := label + 1;
}

DFS(G[]): node ptr array, M[]: int array, i, label: int) {
 v : node pointer;
 M[i] := label;
 v := G[i];
 while v != null do
 if M[v.index] = 0 then DFS(G,M,v.index,label);
 v := v.next;
}

Spanning Tree

Spanning tree – no cycles and connects all vertices
Exercise

- Design a depth-first algorithm to output a spanning tree of a connected graph.

Main:
 i : integer
 for i = 1 to n M[i] := 0;
 T := EmptySet;
 STree(i);

STree(G[]): node ptr array, M[]: int array, i : int) : {

Performance DFS

- n vertices and m edges
- Storage complexity O(n + m)
- Time complexity O(n + m)
- Linear Time!
Breadth-First Search

BFS

- **Initialize Q to be empty:**
- **Enqueue(Q, 1) and mark 1:**
- **while Q is not empty do:**
 - **i := Dequeue(Q);**
 - **for each j adjacent to i do:**
 - **if j is not marked then:**
 - **Enqueue(Q, j) and mark j:**
 - **end(BFS)**

Depth-First vs Breadth-First

- **Depth-First**
 - Stack or recursion
 - Many applications
- **Breadth-First**
 - Queue (recursion no help)
 - Can be used to find shortest paths from the start vertex
 - Can be used to find short alternating paths for matching
Bipartite Matching Algorithm

set M to be the empty set initially
repeat
find an alternating path $x_1x_2...x_{2n}$
\((x_i,x_{i+1}) \in E - M \) if \(i \) is odd and \((x_i,x_{i+1}) \) in \(M \) if \(i \) is even
delete \((x_i,x_{i+1})\) from \(M \) if \(i \) is even
add \((x_i,x_{i+1})\) to \(M \) if \(i \) is odd
until no alternating path can be found
if \(M \) has every vertex in \(U \) then \(M \) is a matching
if \(M \) does not have some vertex then there is complete matching, but \(M \) is a maximum size matching

Partial Matching

Partial Matching

Alternating Path

Finding an Alternating Path 1

• Direct the edges
 ▶ U to V if edge in \(E - M \)
 ▶ V to U if edge in \(M \)

Finding an Alternating Path 2

• For each \(u \) in \(U \) which is not matched do a breadth-first search until an unmatched \(v \) in \(V \) is found.
 ▶ If no unmatched \(v \) is found then no alternating path from \(u \)
 ▶ Each visited node is marked and not visited again
Can also use depth-first search, but longer longer alternating paths would be found.

Running Time of Maximum Matching

• Parameters
 ▶ Number of edges \(m \)
 ▶ Number of vertices \(n \)
• Iterations of find alternating path — \(n \)
 ▶ Each iteration increases the matching size by 1
• Time to find an alternating path
 ▶ Direct the edges \(O(m) \) (assuming \(m \geq n \))
 ▶ Breadth-first search \(O(m) \) (assuming \(m \geq n \))
• Total time \(O(nm) \) (Comment: \(nm \leq n^2 \))
 ▶ Can be solved in \(O(n^{2.5}) \) by clever tricks.
Exercise Solution

- Design a depth-first algorithm to output a spanning tree of a connected graph.

```c
STree(G[]: node ptr array, M[]: int array i: integer) : |
v : node pointer;
M[i] := 1;
v := G[i];
while v ≠ null do
  if M[v.index] = 0 then
    Insert ((i, v.index), T); STree(v.index);
    v := v.next;
```