Topological Sort

CSE 373
Data Structures
Lecture 19
Readings and References

• Reading
 › Section 9.2

Some slides based on: CSE 326 by S. Wolfman, 2000
Topological Sort

Problem: Find an order in which all these courses can be taken.

Example: 142 143 378
370 321 341 322
326 421 401

In order to take a course, you must take all of its prerequisites first.
Given a digraph $G = (V, E)$, find a linear ordering of its vertices such that:

for any edge (v, w) in E, v precedes w in the ordering
Any linear ordering in which all the arrows go to the right is a valid solution.

Note that F can go anywhere in this list because it is not connected.
Topo sort - bad example

Any linear ordering in which an arrow goes to the left is not a valid solution.
Not all can be Sorted

- A directed graph with a cycle cannot be topologically sorted.
Cycles

- Given a digraph $G = (V, E)$, a cycle is a sequence of vertices v_1, v_2, \ldots, v_k such that
 - $k < 1$
 - $v_1 = v_k$
 - (v_i, v_{i+1}) in E for $1 \leq i < k$.
- G is acyclic if it has no cycles.
Step 1: Identify vertices that have no incoming edges
- The “in-degree” of these vertices is zero
Topo sort algorithm - 1a

Step 1: Identify vertices that have no incoming edges
- If *no such vertices*, graph has only cyclic(s) (cyclic graph)
- Topological sort not possible – Halt.

Example of a cyclic graph
Topo sort algorithm - 1b

Step 1: Identify vertices that have no incoming edges
- Select one such vertex
Step 2: Delete this vertex of in-degree 0 and all its outgoing edges from the graph. Place it in the output.
Continue until done

Repeat Step 1 and Step 2 until graph is empty

Select

![Graph Diagram with nodes B, C, D, E, F, and A connected by arrows showing the direction of edges.]}
Select B. Copy to sorted list. Delete B and its edges.
Select C. Copy to sorted list. Delete C and its edges.
Select D. Copy to sorted list. Delete D and its edges.
Select E. Copy to sorted list. Delete E and its edges.
Select F. Copy to sorted list. Delete F and its edges.
Done

Remove from algorithm and serve.

A B C D E F
Implementation

Assume adjacency list representation

Translation array

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
</tbody>
</table>
Calculate In-degrees

In-Degree array

D
0
1
1
2
2
0

A
1 → 2 → 4
2 → 3
3 → 4
4 → 5
5

11/27/02
Topological Sort - Lecture 19
Calculate In-degrees

```plaintext
for i = 1 to n do D[i] := 0; endfor
for i = 1 to n do
    x := A[i];
    while x ≠ null do
        D[x.value] := D[x.value] + 1;
        x := x.next;
    endwhile
endfor
```
Maintaining Degree 0 Vertices

Key idea: Initialize and maintain a queue (or stack) of vertices with In-Degree 0.
Topo Sort using a Queue

After each vertex is output, when updating In-Degree array, *enqueue any vertex whose In-Degree becomes zero*.

Queue: 6 2

Output: 1

D:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A:

2 → 4
3 → 4
4 → 5
5 → 6
1

11/27/02 Topological Sort - Lecture 19
Topological Sort Algorithm

1. Store each vertex’s In-Degree in an array D
2. Initialize queue with all “in-degree=0” vertices
3. While there are vertices remaining in the queue:
 (a) Dequeue and output a vertex
 (b) Reduce In-Degree of all vertices adjacent to it by 1
 (c) Enqueue any of these vertices whose In-Degree became zero
4. If all vertices are output then success, otherwise there is a cycle.
Some Detail

Main Loop
while notEmpty(Q) do
 x := Dequeue(Q)
 Output(x)
 y := A[x];
 while y ≠ null do
 D[y.value] := D[y.value] - 1;
 if D[y.value] = 0 then Enqueue(Q,y.value);
 y := y.next;
 endwhile
endwhile
Topological Sort Analysis

• Initialize In-Degree array: $O(|V| + |E|)$
• Initialize Queue with In-Degree 0 vertices: $O(|V|)$
• Dequeue and output vertex:
 › $|V|$ vertices, each takes only $O(1)$ to dequeue and output: $O(|V|)$
• Reduce In-Degree of all vertices adjacent to a vertex and Enqueue any In-Degree 0 vertices:
 › $O(|E|)$
• For input graph $G=(V,E)$ run time = $O(|V| + |E|)$
 › Linear time!