What are graphs?

• Yes, this is a graph…

• But we are interested in a different kind of “graph”

Graphs

• Graphs are composed of
 › Nodes (vertices)
 › Edges

Varieties

• Nodes
 › Labeled or unlabeled
• Edges
 › Directed or undirected
 › Labeled or unlabeled

Motivation for Graphs

• Consider the data structures we have looked at so far…
• Linked list: nodes with 1 incoming edge + 1 outgoing edge
• Binary trees/heap: nodes with 1 incoming edge + 2 outgoing edges
• Binomial trees/2-3 trees: nodes with 1 incoming edge + multiple outgoing edges
• Up-trees: nodes with multiple incoming edges + 1 outgoing edge
Motivation for Graphs

- What is common among these data structures?
- How can you generalize them?
- Consider data structures for representing the following problems...

CSE Course Prerequisites at UW

Nodes = courses
Directed edge = prerequisite

Representing a Maze

Nodes = rooms
Edge = door or passage

Representing Electrical Circuits

Nodes = battery, switch, resistor, etc.
Edges = connections

Program statements

Nodes = symbols/operands
Edges = relationships

Precedence

Nodes = statements
Edges = precedence requirements
Information Transmission in a Computer Network

Nodes = computers
Edges = transmission rates

Traffic Flow on Highways

Nodes = cities
Edges = # vehicles on connecting highway

Soap Opera Relationships

Six Degrees of Separation from Kevin Bacon

Six Degrees of Separation from Kevin Bacon

Niche overlaps
Graph Definition

- A graph is simply a collection of nodes plus edges
 - Linked lists, trees, and heaps are all special cases of graphs.
- The nodes are known as vertices (node = “vertex”)
- Formal Definition: A graph G is a pair (V, E) where
 - V is a set of vertices or nodes
 - E is a set of edges that connect vertices

Graph Example

- Here is a directed graph $G = (V, E)$
 - Each edge is a pair (v_1, v_2), where v_1, v_2 are vertices in V
 - $V = \{A, B, C, D, E, F\}$
 - $E = \{(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)\}$

Directed vs Undirected Graphs

- If the order of edge pairs (v_1, v_2) matters, the graph is directed (also called a digraph): $(v_1, v_2) = (v_2, v_1)$
- If the order of edge pairs (v_1, v_2) does not matter, the graph is called an undirected graph: in this case, $(v_1, v_2) = (v_2, v_1)$

Undirected Terminology

- Two vertices u and v are adjacent in an undirected graph G if (u, v) is an edge in G
 - edge $e = (u, v)$ is incident with vertex u and vertex v
 - The degree of a vertex in an undirected graph is the number of edges incident with it
 - a self-loop counts twice (both ends count)
 - denoted with $\deg(v)$

Directed Terminology

- Vertex u is adjacent to vertex v in a directed graph G if (u, v) is an edge in G
 - vertex u is the initial vertex of (u, v)
- Vertex v is adjacent from vertex u
 - vertex v is the terminal (or end) vertex of (u, v)
- Degree
 - in-degree is the number of edges with the vertex as the terminal vertex
 - out-degree is the number of edges with the vertex as the initial vertex
Directed Terminology

- B adjacent to C and C adjacent from B

Handshaking Theorem

- Let $G=(V,E)$ be an undirected graph with $|E|=e$ edges
- Then $2e = \sum \text{deg}(v)$
- Every edge contributes +1 to the degree of each of the two vertices it is incident with
 - number of edges is exactly half the sum of $\text{deg}(v)$
 - the sum of the $\text{deg}(v)$ values must be even

Graph Representations

- Space and time are analyzed in terms of:
 - Number of vertices = $|V|$ and
 - Number of edges = $|E|$ and
- There are at least two ways of representing graphs:
 - The adjacency matrix representation
 - The adjacency list representation

Adjacency Matrix

For each v in V, $L(v) = \text{list of } w \text{ such that } (v,w) \text{ is in } E$

Adjacency List

Space = $|V| + 2|E|$
Bipartite

- A simple graph is bipartite if:
 - its vertex set V can be partitioned into two disjoint non-empty sets such that
 - every edge in the graph connects a vertex in one set to a vertex in the other set
 - which also means that no edge connects a vertex in one set to another vertex in the same set
 - no triangular or other odd length cycles

Bipartite examples

- $\{a \ b \ d\}$
- $\{c \ e \ f \ g\}$

Bipartite example - not

- a says that b and f should be in S_2, but b says a and f should be in S_1.
- TILT!

Bipartite Graph Application

- Classroom scheduling
 - Nodes are Classrooms and Classes
 - Edge between a classroom and class if the class will fit in the classroom and has the right technology.

Matching Problem

- Find an assignment of classes to classrooms so that every class fits and has the right technology.
Steps in Solving the Problem

• Abstract the problem as a graph problem.
• Find an algorithm for solving the graph problem.
• Design data structures and algorithms to implement the graph solution.
• Write code

Alternating Path

• Let $G = (U,V,E)$ be a bipartite graph where (u,v) in E only if u in U and v in V.
• A partial matching M is subset of E such that if (u,v) and (u',v') in M then either $(u = u'$ and $v = v')$ or $(u = u'$ or $v = v')$.
• An alternating path is $x_1,x_2,...,x_{2n}$ such that
 1. (x_1,x_n) in $E - M$ if i is odd
 2. (x_1,x_n) in M if i is even
 3. x_1 and x_n are not matched in the partial matching

Partial Matching

Matching Algorithm

set M to be the empty set initially
repeat
 find an alternating path $x_1,x_2,...,x_{2n}$
 // (x_i,x_{i+1}) in $E - M$ if i is odd and (x_i,x_{i+1}) in M if i is even
 // delete (x_i,x_{i+1}) from M if i is even
 add (x_i,x_{i+1}) to M if i is odd
until no alternating path can be found
if M has every vertex of U then M is a matching
if M does not have some vertex then there is complete matching, but M is a maximum size matching

One step in the Algorithm
Maximum Matching

• Prove that M is maximum size if and only if there is no alternating path.
• Design data structures algorithms to find alternating paths or determine they don’t exist.
 › Goal: fast data structures and algorithms