Reading

• Reading
 › Section 9.1
What are graphs?

- Yes, this is a graph....

- But we are interested in a different kind of "graph"
Graphs

- Graphs are composed of
 - Nodes (vertices)
 - Edges

![Graph Diagram]

node

edge
Varieties

• Nodes
 › Labeled or unlabeled

• Edges
 › Directed or undirected
 › Labeled or unlabeled
Motivation for Graphs

- Consider the data structures we have looked at so far…
 - **Linked list**: nodes with 1 incoming edge + 1 outgoing edge
 - **Binary trees/heaps**: nodes with 1 incoming edge + 2 outgoing edges
 - **Binomial trees/B-trees**: nodes with 1 incoming edge + multiple outgoing edges
 - **Up-trees**: nodes with multiple incoming edges + 1 outgoing edge
Motivation for Graphs

• What is common among these data structures?
• How can you generalize them?
• Consider data structures for representing the following problems…
CSE Course Prerequisites at UW

Nodes = courses
Directed edge = prerequisite
Representing a Maze

Nodes = rooms
Edge = door or passage
Representing Electrical Circuits

Nodes = battery, switch, resistor, etc.
Edges = connections
Program statements

Program statements

\[x_1 = q + y \times z \]
\[x_2 = y \times z - q \]

Naive:

\[y \times z \] calculated twice

common subexpression eliminated:

Nodes = symbols/operators
Edges = relationships
Precedence

\[S_1 \quad a = 0; \]
\[S_2 \quad b = 1; \]
\[S_3 \quad c = a + 1 \]
\[S_4 \quad d = b + a; \]
\[S_5 \quad e = d + 1; \]
\[S_6 \quad e = c + d; \]

Which statements must execute before \(S_6 \)?
\(S_1, S_2, S_3, S_4 \)

Nodes = statements
Edges = precedence requirements
Information Transmission in a Computer Network

Nodes = computers
Edges = transmission rates
Traffic Flow on Highways

Nodes = cities
Edges = # vehicles on connecting highway
Soap Opera Relationships

- Victor
- Ashley
- Brad
- Trisha
- Michelle
- Wayne
- Peter
Six Degrees of Separation from Kevin Bacon

Where's my Oscar?

Apollo 13
Tom Hanks
Forest Gump
Gary Sinise
Robin Wright
The Princess Bride
Wallace Shawn
Cary Elwes
Toy Story
Laurie Metcalf
Desperately Seeking Susan
Rosanna Arquette
Cheech Marin
After Hours
Six Degrees of Separation from Kevin Bacon

Kevin Bacon
Apollo 13
Gary Sinise
Apollo 13
Tom Hanks
Forest Gump
Robin Wright
The Princess Bride
The Princess Bride
Cary Elwes
Toy Story
Wallace Shawn
Rosanna Arquette
Desperately Seeking Susan
After Hours
Cheech Marin
Laurie Metcalf
Toy Story
Desperately Seeking Susan
After Hours
Cheech Marin
Laurie Metcalf
Toy Story
Niche overlaps

Raccoon Hawk Owl

Opossum Squirrel Crow

Shrew Mouse Woodpecker
Graph Definition

• A graph is simply a collection of nodes plus edges
 › Linked lists, trees, and heaps are all special cases of graphs
• The nodes are known as vertices (node = “vertex”)
• Formal Definition: A graph G is a pair (V, E) where
 › V is a set of vertices or nodes
 › E is a set of edges that connect vertices
Graph Example

- Here is a directed graph $G = (V, E)$
 - Each edge is a pair (v_1, v_2), where v_1, v_2 are vertices in V

$V = \{A, B, C, D, E, F\}$
$E = \{(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)\}$
Directed vs Undirected Graphs

- If the order of edge pairs \((v_1, v_2)\) matters, the graph is directed (also called a digraph): \((v_1, v_2) \neq (v_2, v_1)\)

- If the order of edge pairs \((v_1, v_2)\) does not matter, the graph is called an undirected graph: in this case, \((v_1, v_2) = (v_2, v_1)\)
Undirected Terminology

• Two vertices u and v are adjacent in an undirected graph G if $\{u,v\}$ is an edge in G
 › edge $e = \{u,v\}$ is incident with vertex u and vertex v

• The degree of a vertex in an undirected graph is the number of edges incident with it
 › a self-loop counts twice (both ends count)
 › denoted with $\text{deg}(v)$
Undirected Terminology

(A,B) is incident to A and to B

B is adjacent to C and C is adjacent to B

Degree = 3
Degree = 0
Directed Terminology

- Vertex u is adjacent to vertex v in a directed graph G if (u,v) is an edge in G
 - vertex u is the initial vertex of (u,v)
- Vertex v is adjacent from vertex u
 - vertex v is the terminal (or end) vertex of (u,v)
- Degree
 - in-degree is the number of edges with the vertex as the terminal vertex
 - out-degree is the number of edges with the vertex as the initial vertex
Directed Terminology

B adjacent to C and C adjacent from B

In-degree = 2
Out-degree = 1
Handshaking Theorem

• Let \(G = (V, E) \) be an undirected graph with \(|E| = e\) edges
• Then \(2e = \sum_{v \in V} \deg(v) \)
• Every edge contributes +1 to the degree of each of the two vertices it is incident with
 › number of edges is exactly half the sum of \(\deg(v) \)
 › the sum of the \(\deg(v) \) values must be even
Graph Representations

- Space and time are analyzed in terms of:
 - Number of vertices $= |V|$ and
 - Number of edges $= |E|$
- There are at least two ways of representing graphs:
 - The *adjacency matrix* representation
 - The *adjacency list* representation
Adjacency Matrix

\[M(v, w) = \begin{cases}
1 & \text{if } (v, w) \text{ is in } E \\
0 & \text{otherwise}
\end{cases} \]

\[
\begin{pmatrix}
A & B & C & D & E & F \\
A & 0 & 1 & 0 & 1 & 0 & 0 \\
B & 1 & 0 & 1 & 0 & 0 & 0 \\
C & 0 & 1 & 0 & 1 & 1 & 0 \\
D & 1 & 0 & 1 & 0 & 1 & 0 \\
E & 0 & 0 & 1 & 1 & 0 & 0 \\
F & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

\[\text{Space} = |V|^2 \]
Adjacency Matrix for a Digraph

\[
M(v, w) = \begin{cases}
1 & \text{if } (v, w) \text{ is in } E \\
0 & \text{otherwise}
\end{cases}
\]

\[
M = \begin{pmatrix}
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

Space = \(|V|^2\)
Adjacency List

For each v in V, $L(v) =$ list of w such that (v, w) is in E

Space = $a \ |V| + 2 \ b \ |E|$
Adjacency List for a Digraph

For each v in V, $L(v) =$ list of w such that (v, w) is in E

$Space = a |V| + b |E|$
Bipartite

• A simple graph is bipartite if:
 › its vertex set V can be partitioned into two disjoint non-empty sets such that
 • every edge in the graph connects a vertex in one set to a vertex in the other set
 • which also means that no edge connects a vertex in one set to another vertex in the same set
 › no triangular or other odd length cycles
Bipartite examples

\{a, b, d\}
\{c, e, f, g\}
Bipartite example - not

a says that b and f should be in S₂, but b says a and f should be in S₁. TILT!
Bipartite Graph Application

- Classroom scheduling
 - Nodes are Classrooms and Classes
 - Edge between a classroom and class if the class will fit in the classroom and has the right technology.
Matching Problem

• Find an assignment of classes to classrooms so that every class fits and has the right technology.
Steps in Solving the Problem

- Abstract the problem as a graph problem.
- Find an algorithm for solving the graph problem.
- Design data structures and algorithms to implement the graph solution.
- Write code
Alternating Path

- Let $G = (U, V, E)$ be a bipartite graph where (u, v) in E only if u in U and v in V.
- A partial matching M is subset of E such that if (u, v) and (u', v') in M then either $(u = u' \text{ and } v = v')$ or $(u \neq u' \text{ or } v \neq v')$.
- An alternating path is x_1, x_2, \ldots, x_{2n} such that
 - (x_i, x_{i+1}) in $E - M$ if i is odd
 - (x_i, x_{i+1}) in M if i is even
 - x_1 and x_{2n} are not matched in the partial matching
Partial Matching
Alternating Path
Matching Algorithm

set M to be the empty set initially
repeat
 find an alternating path x_1, x_2, \ldots, x_{2n}
 // (x_i, x_{i+1}) in $E - M$ if i is odd and (x_i, x_{i+1}) in M if i is even
 neither x_1 nor x_{2n} matched //
 delete (x_i, x_{i+1}) from M if i is even
 add (x_i, x_{i+1}) to M if i is odd
until no alternating path can be found

if M has every vertex of U then M is a matching
if M does not have some vertex then there is complete
matching, but M is a maximum size matching
One step in the Algorithm
Maximum Matching

• Prove that M is maximum size if and only if there is no alternating path.
• Design data structures algorithms to find alternating paths or determine they don’t exist.
 > Goal: fast data structures and algorithms