Disjoint Union / Find

CSE 373
Data Structures
Lecture 17

Reading

- Reading
 - Chapter 8

Disjoint Union - Find

- Maintain a set of pairwise disjoint sets.
 - \{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}
- Each set has a unique name, one of its members
 - \{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}

Union

- Union(x,y) – take the union of two sets named x and y
 - \{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}
 - Union(5,1)
 - \{3,5,7,1,6\}, \{4,2,8\}, \{9\}

Find

- Find(x) – return the name of the set containing x.
 - \{3,5,7,1,6\}, \{4,2,8\}, \{9\}
 - Find(1) = 5
 - Find(4) = 8

Cute Application

- Build a random maze by erasing edges.
Cute Application

• Pick Start and End

Desired Properties

• None of the boundary is deleted
• Every cell is reachable from every other cell.
• There are no cycles – no cell can reach itself by a path unless it retraces some part of the path.

A Good Solution

A Hidden Tree
Number the Cells

We have disjoint sets \(S = \{ 1 \}, \{ 2 \}, \{ 3 \}, \{ 4 \}, \ldots, \{ 36 \} \) each cell is unto itself.
We have all possible edges \(E = \{ (1,2), (1,7), (2,8), (2,3), \ldots \} \) 60 edges total.

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>End</td>
</tr>
</tbody>
</table>

Basic Algorithm

- \(S \) = set of sets of connected cells
- \(E \) = set of edges
- Maze = set of maze edges initially empty

While there is more than one set in \(S \)
pick a random edge \((u,v) \) and remove from \(E \)
\(u := \text{Find}(u) \);
\(v := \text{Find}(v) \);
if \(u = v \) then
\(\text{Union}(u,v) \)
else
add \((u,v)\) to Maze

All remaining members of \(E \) together with Maze for the maze

Example

Pick \((8,14)\)

\(S = \{ 1, 2, 7, 8, 9, 13, 19 \} \)
\(\{ 3 \} \)
\(\{ 4 \} \)
\(\{ 5 \} \)
\(\{ 6 \} \)
\(\{ 10 \} \)
\(\{ 11, 17 \} \)
\(\{ 12, 20, 26, 27 \} \)
\(\{ 14, 15, 16, 21 \} \)
\(\{ 31 - 36 \} \)

Example

\(S = \{ 1, 2, 7, 8, 9, 13, 19, 14, 20, 26, 27 \} \)
\(\{ 3 \} \)
\(\{ 4 \} \)
\(\{ 5 \} \)
\(\{ 10 \} \)
\(\{ 11, 17 \} \)
\(\{ 12, 20, 26, 27 \} \)
\(\{ 14, 15, 16, 21 \} \)
\(\{ 31 - 36 \} \)

Example at the End

\(S = \{ 1, 2, 3, 4, 5, 6, \ldots, 36 \} \)

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>End</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(22, 23, 24, 29, 30, 32) (33, 34, 35, 36)</td>
</tr>
</tbody>
</table>

Maze
Up-Tree for DU/F

Initial state

1 2 3 4 5 6 7

Intermediate state

1 3 7 5 4 2

Roots are the names of each set.

Find Operation

- Find(x) follow x to the root and return the root

![Find Operation Diagram]

Find(6) = 7

Union Operation

- Union(i,j) - assuming i and j roots, point i to j.

![Union Operation Diagram]

`Union(1,7)`

Simple Implementation

- Array of indices

![Simple Implementation Diagram]

`Up[] = 0` means x is a root.

Exercise

- Design Find operator
 - Recursive version
 - Iterative version

```java
Find[up[] : integer array, x : integer] : integer {
  //precondition: x is in the range 1 to size/
  ??
}
```
A Bad Case

```
1 2 3 ...
1 2 3 ...
1 2 3 ...
```

\[\text{Union}(1,2) \]

\[\text{Union}(2,3) \]

\[\vdots \]

\[\text{Union}(n-1,n) \]

\[\text{Find}(1) \text{ constant time} \]

Weighted Union

- **Weighted Union**
 - Always point the smaller tree to the root of the larger tree

```
  2
  1
  3
  4
  7

W-\text{Union}(1,7)
```

Example Again

```
1 2 3 ...
1 2 3 ...
1 2 3 ...
```

\[\text{Union}(1,2) \]

\[\text{Union}(2,3) \]

\[\vdots \]

\[\text{Union}(n-1,n) \]

\[\text{Find}(1) \text{ n steps!} \]

Analysis of Weighted Union

- With weighted union an up-tree of height \(h \) has weight at least \(2^h \).
- Proof by induction
 - Basis: \(h = 0 \). The up-tree has one node, \(2^0 = 1 \)
 - Inductive step: Assume true for all \(h' < h \).

\[W(T_{h-1}) > 2^{h-1} \]

\[W(T_{h-1}) + W(T_{h-1}) > 2^{h-1} + 2^{h-1} = 2^h \]

Analysis of Weighted Union

- Let \(T \) be an up-tree of weight \(n \) formed by weighted union. Let \(h \) be its height.
- \(n > 2^h \)
- \(\log_2 n > h \)
- \(\text{Find}(x) \) in tree \(T \) takes \(O(\log n) \) time.
- Can we do better?

Worst Case for Weighted Union

\[\frac{n}{2} \text{ Weighted Unions} \]

\[\frac{n}{4} \text{ Weighted Unions} \]
Example of Worst Cast (cont’)

After n - 1 = n/2 + n/4 + ... + 1 weighted unions

If there are n = 2^k nodes then the longest path from leaf to root has length k.

Elegant Array Implementation

```
2 1 3 4 7
2 3 5 4
1 2 3 4 5 6 7
up weight
0 1 0 7 7 5 0
2 1 14
```

Weighted Union

```
W-Union(i, j : index)
//i and j are roots/
wi := weight[i];
wj := weight[j];
if wi < wj then
  up[i] := j;
  weight[j] := wi + wj;
else
  up[j] := i;
  weight[i] := wi + wj;
```

Path Compression

• On a Find operation point all the nodes on the search path directly to the root.

Self-Adjustment Works

Path Compression Find

```
PC-Find(i : index) {
  r := i;
  while up[r] ≠ 0 do  //find root/
    r := up[r];
  if i ≠ r then  //compress path/
    k := up[i];
    while k ≠ r do
      up[i] := r;
      i := k;
      k := up[k];
  return(r)
}
```
Disjoint Union / Find with Weighted Union and PC

- Worst case time complexity for a W-Union is $O(1)$ and for a PC-Find is $O(\log n)$.
- Time complexity for $m \geq n$ operations on n elements is $O(m \log^* n)$ where $\log^* n$ is a very slow growing function.
 - $\log^* n < 7$ for all reasonable n. Essentially constant time per operation!
- Using “ranked union” gives an even better bound theoretically.

Amortized Complexity

- For disjoint union / find with weighted union and path compression.
 - average time per operation is essentially a constant.
 - worst case time for a PC-Find is $O(\log n)$.
- An individual operation can be costly, but over time the average cost per operation is not.

Find Solutions

Recursive

```java
Find(array : integer, x : integer) : integer {
  if x = 0 then return x
  else return Find(array, array[x]);
}
```

Iterative

```java
Find(array : integer, x : integer) : integer {
  x := array[x];
  return x;
}
```