Divide and Conquer Sorting

CSE 373
Data Structures
Lecture 14
Readings

• Reading
 › Section 7.6, Mergesort
 › Section 7.7, Quicksort
“Divide and Conquer”

- Very important strategy in computer science:
 - Divide problem into smaller parts
 - Independently solve the parts
 - Combine these solutions to get overall solution
- **Idea 1**: Divide array into two halves, *recursively* sort left and right halves, then *merge* two halves \rightarrow known as Mergesort
- **Idea 2**: Partition array into small items and large items, then recursively sort the two sets \rightarrow known as Quicksort
Mergesort

- Divide it in two at the midpoint
- Conquer each side in turn (by recursively sorting)
- Merge two halve together
Mergesort Example

\[
\begin{array}{cccccccc}
8 & 2 & 9 & 4 & 5 & 3 & 1 & 6 \\
\end{array}
\]

Divide

Divide

Divide

1 element

Merge

Merge

Merge

11/15/02

Divide and Conquer Sorting - Lecture 14
Auxiliary Array

- The merging requires an auxiliary array.

```
  2 4 8 9 1 3 5 6
```

Auxiliary array
Auxiliary Array

- The merging requires an auxiliary array.

```
  2  4  8  9  1  3  5  6
```

```
  1   Auxiliary array
```
Auxiliary Array

- The merging requires an auxiliary array.

```
    2 4 8 9 1 3 5 6
    1 2 3 4 5
```

Auxiliary array
Merging

normal

target

Left completed first

target
Merging

Right completed first

target

first

second

i

j

11/15/02 Divide and Conquer Sorting - Lecture 14
Merging

Merge(A[], T[] : integer array, left, right : integer) : {
 mid, i, j, k, l, target : integer;
 mid := (right + left)/2;
 i := left; j := mid + 1; target := left;
 while i ≤ mid and j ≤ right do
 else T[target] := A[j]; j := j + 1;
 target := target + 1;
 if i > mid then //left completed//
 for k := left to target-1 do A[k] := T[k];
 if j > right then //right completed//
 k := mid; l := right;
 while k ≥ i do A[l] := A[k]; k := k-1; l := l-1;
 for k := left to target-1 do A[k] := T[k];
}
Recursive Mergesort

Mergesort(A[], T[] : integer array, left, right : integer) : {
 if left < right then
 mid := (left + right)/2;
 Mergesort(A,T,left,mid);
 Mergesort(A,T,mid+1,right);
 Merge(A,T,left,right);
 }

MainMergesort(A[1..n]: integer array, n : integer) : {
 T[1..n]: integer array;
 Mergesort[A,T,1,n];
}
Iterative Mergesort

Merge by 1
Merge by 2
Merge by 4
Merge by 8
Iterative Mergesort

Merge by 1
Merge by 2
Merge by 4
Merge by 8
Merge by 16

↓ copy
Iterative Mergesort

IterativeMergesort(A[1..n]: integer array, n : integer) : {
 //precondition: n is a power of 2
 i, m, parity : integer;
 T[1..n]: integer array;
 m := 2; parity := 0;
 while m < n do
 for i = 1 to n - m + 1 by m do
 if parity = 0 then Merge(A,T,i,i+m-1);
 else Merge(T,A,i,i+m-1);
 parity := 1 - parity;
 m := 2*m;
 if parity = 1 then
 for i = 1 to n do A[i] := T[i];
 }

How do you handle non-powers of 2?
How can the final copy be avoided?

11/15/02 Divide and Conquer Sorting - Lecture 14
Mergesort Analysis

- Let $T(N)$ be the running time for an array of N elements
- Mergesort divides array in half and calls itself on the two halves. After returning, it merges both halves using a temporary array
- Each recursive call takes $T(N/2)$ and merging takes $O(N)$
Mergesort Recurrence Relation

• The recurrence relation for $T(N)$ is:
 › $T(1) \leq a$
 • base case: 1 element array \rightarrow constant time
 › $T(N) \leq 2T(N/2) + bN$
 • Sorting N elements takes
 – the time to sort the left half
 – plus the time to sort the right half
 – plus an $O(N)$ time to merge the two halves

• $T(N) = O(n \log n)$
Properties of Mergesort

- Not in-place
 - Requires an auxiliary array
- Stable
 - Make sure that left is sent to target on equal values.
- Very few comparisons
- Iterative Mergesort reduces copying.
Quicksort

- Quicksort uses a divide and conquer strategy, but does not require the $O(N)$ extra space that MergeSort does
 - Partition array into left and right sub-arrays
 - the elements in left sub-array are all less than pivot
 - elements in right sub-array are all greater than pivot
 - Recursively sort left and right sub-arrays
 - Concatenate left and right sub-arrays in $O(1)$ time
“Four easy steps”

• To sort an array S
 › If the number of elements in S is 0 or 1, then return. The array is sorted.
 › Pick an element v in S. This is the pivot value.
 › Partition $S-\{v\}$ into two disjoint subsets, $S_1 = \{\text{all values } x \leq v\}$, and $S_2 = \{\text{all values } x \geq v\}$.
 › Return $\text{QuickSort}(S_1), v, \text{QuickSort}(S_2)$
The steps of QuickSort

1. Select pivot value
2. Partition S
3. QuickSort(S_1) and QuickSort(S_2)
4. Presto! S is sorted

[Weiss]
Details, details

- “The algorithm so far lacks quite a few of the details”
- Implementing the actual partitioning
- Picking the pivot
 - want a value that will cause $|S_1|$ and $|S_2|$ to be non-zero, and close to equal in size if possible
- Dealing with cases where the element equals the pivot
Quicksort Partitioning

• Need to partition the array into left and right sub-arrays
 › the elements in left sub-array are ≤ pivot
 › elements in right sub-array are ≥ pivot
• How do the elements get to the correct partition?
 › Choose an element from the array as the pivot
 › Make one pass through the rest of the array and swap as needed to put elements in partitions
Partitioning is done In-Place

• One implementation (there are others)
 › median3 finds pivot and sorts left, center, right
 › Swap pivot with next to last element
 › Set pointers i and j to start and end of array
 › Increment i until you hit element A[i] > pivot
 › Decrement j until you hit element A[j] < pivot
 › Swap A[i] and A[j]
 › Repeat until i and j cross
 › Swap pivot (= A[N-2]) with A[i]
Choose the pivot as the median of three.

Place the pivot and the largest at the right and the smallest at the left
Example

Move i to the right to be larger than pivot. Move j to the left to be smaller than pivot. Swap
Example

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>4</th>
<th>2</th>
<th>7</th>
<th>3</th>
<th>5</th>
<th>9</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

S₁ < pivot pivot S₂ > pivot
Recursive Quicksort

Quicksort(A[], left, right : integer): {
 pivotindex : integer;
 if left + CUTOFF ≤ right then
 pivot := median3(A, left, right);
 pivotindex := Partition(A, left, right-1, pivot);
 Quicksort(A, left, pivotindex - 1);
 Quicksort(A, pivotindex + 1, right);
 else
 Insertionsort(A, left, right);
}

Don’t use quicksort for small arrays.
CUTOFF = 10 is reasonable.
Alternative Pivot Rules

- Chose A[left]
 - Fast, but may be too biased
- Chose A[random], left ≤ random ≤ right
 - Completely unbiased
 - Will cause relatively even split, but slow
- Median of three, A[left], A[right], A[(left+right)/2]
 - The standard, tends to be unbiased, and does a little sorting on the side.
Quicksort Best Case Performance

• Algorithm always chooses best pivot and splits sub-arrays in half at each recursion
 › T(0) = T(1) = O(1)
 • constant time if 0 or 1 element
 › For N > 1, 2 recursive calls plus linear time for partitioning
 T(N) = 2T(N/2) + O(N)
 • Same recurrence relation as Mergesort
 › T(N) = $O(N \log N)$
Quicksort Worst Case Performance

• Algorithm always chooses the worst pivot – one sub-array is empty at each recursion
 › \(T(N) \leq a \) for \(N \leq C \)
 › \(T(N) \leq T(N-1) + bN \)
 › \(\leq T(N-2) + b(N-1) + bN \)
 › \(\leq T(C) + b(C+1)+ \ldots + bN \)
 › \(\leq a +b(C + C+1 + C+2 + \ldots + N) \)
 › \(T(N) = O(N^2) \)

• Fortunately, *average case performance* is \(O(N \log N) \) (see text for proof)
Properties of Quicksort

- Not stable because of long distance swapping.
- No iterative version (without using a stack).
- Pure quicksort not good for small arrays.
- “In-place”, but uses auxiliary storage because of recursive calls.
- $O(n \log n)$ average case performance, but $O(n^2)$ worst case performance.
Folklore

- “Quicksort is the best in-memory sorting algorithm.”
- Truth
 - Quicksort uses very few comparisons on average.
 - Quicksort does have good performance in the memory hierarchy.
 - Small footprint
 - Good locality