Sorting Introduction

CSE 373
Data Structures
Lecture 13

Reading

- Reading
 > Sections 7.1-7.5.

Sorting

- Input
 > an array A of data records
 > a key value in each data record
 > a comparison function which imposes a consistent ordering on the keys
- Output
 > reorganize the elements of A such that
 - For any i and j, if $i < j$ then $A[i] \leq A[j]$

Consistent Ordering

- The comparison function must provide a consistent ordering on the set of possible keys
 > You can compare any two keys and get back an indication of $a < b$, $a > b$, or $a = b$
 > The comparison functions must be consistent
 - If $\text{compare}(a,b)$ says $a\succeq b$, then $\text{compare}(b,a)$ must say $b\succeq a$
 - If $\text{compare}(a,b)$ says $a\succeq b$, then $\text{compare}(b,a)$ must say $b\succeq a$
 - If $\text{compare}(a,b)$ says $a\succeq b$, then $\text{equals}(a,b)$ and $\text{equals}(b,a)$ must say $a=b$

Why Sort?

- Allows binary search of an N-element array in $O(\log N)$ time
- Allows $O(1)$ time access to kth largest element in the array for any k
- Allows easy detection of any duplicates
- Sorting algorithms are among the most frequently used algorithms in computer science

Space

- How much space does the sorting algorithm require in order to sort the collection of items?
 > Is copying needed
 > In-place sorting – no copying – $O(1)$ additional space.
 > External memory sorting – data so large that does not fit in memory
Time

- How fast is the algorithm?
 - The definition of a sorted array A says that for any i < j, A[i] < A[j]
 - This means that you need to at least check on each element at the very minimum
 - which is $O(n)$
 - And you could end up checking each element against every other element
 - which is $O(n^2)$
 - The big question is: How close to $O(n)$ can you get?

Stability

- Stability: Does it rearrange the order of input data records which have the same key value (duplicates)?
 - E.g. Phone book sorted by name. Now sort by county – is the list still sorted by name within each county?
 - Extremely important property for databases
 - A stable sorting algorithm is one which does not rearrange the order of duplicate keys

Example

- Stable Sort
 - $2, 3, 3, 3, 4, 4, 5, 8$ (unstable)
- Unstable Sort
 - $2, 3, 3, 3, 4, 5, 5, 8$ (stables)

Bubble Sort

- “Bubble” elements to their proper place in the array by comparing elements i and i+1, and swapping if A[i] > A[i+1]
 - Bubble every element towards its correct position
 - last position has the largest element
 - then bubble every element except the last one towards its correct position
 - then repeat until done or until the end of the quarter
 - whichever comes first ...

Bubblesort

```java
bubble(A[], n: integer array, n: integer): {
  i, j: integer;
  for i = 1 to n-1 do
    for j = 2 to n-i+1 do
}

SWAP(a, b): {
  t := a;
  a := b;
  b := t;
}
```
Put the largest element in its place

1. Find the largest value in the array.
2. Swap it with the element in the current position.
3. Move to the next position and repeat until the array is sorted.

Put 2nd largest element in its place

1. Find the second largest value in the array.
2. Swap it with the element in the current position.
3. Move to the next position and repeat until the array is sorted.

Bubble Sort: Just Say No

- "Bubble" elements to their proper place in the array by comparing elements i and i+1, and swapping if A[i] > A[i+1]
- We bubble for i=1 to n (i.e., n times)
- Each bubble is a loop that makes n-i comparisons
- This is O(n^2)

Insertion Sort

- What if first k elements of array are already sorted?
 - > 4, 7, 12, 5, 19, 16
- We can shift the tail of the sorted elements list down and then *insert* next element into proper position and we get k+1 sorted elements
 - > 4, 5, 7, 12, 19, 16

Example

- InsertionSort(A[1..N], integer array, N: integer) {
 j, P, temp: integer;
 for P = 2 to N {
 temp := A[P];
 j := P-1;
 while j > 1 and A[j-1] > temp do
 j := j-1;
 A[j] = temp;
 }
- Is Insertion sort in place? Stable? Running time = ?
- Do you recognize this sort?
 - > Similar to percolate up.

Sorted Intro - Lecture 13
Example

Insertion Sort Characteristics

- In place and Stable
- Running time
 - Worst case is O(N^2)
 - reverse order input
 - must copy every element every time
- Good sorting algorithm for almost sorted data
 - Each item is close to where it belongs in sorted order.

Inversions

- An inversion is a pair of elements in wrong order
- By definition, a sorted array has no inversions
- So you can think of sorting as the process of removing inversions in the order of the elements

Inversions

- A single value out of place can cause several inversions

Reverse order

- All values out of place (reverse order) causes numerous inversions

Inversions

- Our simple sorting algorithms so far swap adjacent elements (explicitly or implicitly) and remove just 1 inversion at a time
 - Their running time is proportional to number of inversions in array
- Given N distinct keys, the maximum possible number of inversions is
 \[(n-1) + (n-2) + \ldots + 1 = \sum_{i=1}^{n-1} (i-1)n = \frac{(n-1)n}{2} \]
Inversions and Adjacent Swap Sorts

- "Average" list will contain half the max number of inversions \(\frac{(n-1)n}{4} \)
 - So the average running time of Insertion sort is \(\Theta(N^2) \)
- Any sorting algorithm that only swaps adjacent elements requires \(\Omega(N^2) \) time because each swap removes only one inversion

Heap Sort

- We use a Max-Heap
- Root node = A[1]
- Keep track of current size N (number of nodes)

Using Binary Heaps for Sorting

- Build a max-heap
- Do N \texttt{DeleteMax} operations and store each Max element as it comes out of the heap
- Data comes out in largest to smallest order
- Where can we put the elements as they are removed from the heap?

1 Removal = 1 Addition

- Every time we do a \texttt{DeleteMax}, the heap gets smaller by one node, and we have one more node to store
 - Store the data at the end of the heap array
 - Not "in the heap" but it is in the heap array

Repeated DeleteMax

- After all the \texttt{DeleteMaxs}, the heap is gone but the array is full and is in sorted order
Heapsort: Analysis

- Running time
 - time to build max-heap is $O(N)$
 - time for N DeleteMax operations is $N O(\log N)$
 - total time is $O(N \log N)$

- Can also show that running time is $\Omega(N \log N)$ for some inputs,
 - so worst case is $\Theta(N \log N)$
 - Average case running time is also $O(N \log N)$

- Heapsort is in-place but not stable