Binary Heaps

CSE 373
Data Structures
Lecture 11

Readings and References

• Reading
 › Sections 6.1-6.4

A New Problem…

• Application: Find the smallest (or highest priority) item quickly
 › Operating system needs to schedule jobs according to priority
 › Doctors in ER take patients according to severity of injuries
 › Event simulation (bank customers arriving and departing, ordered according to when the event happened)

Priority Queue ADT

• Priority Queue can efficiently do:
 › FindMin (and DeleteMin)
 › Insert
• What if we use...
 › Lists: If sorted, what is the run time for Insert and FindMin? Unsorted?
 › Binary Search Trees: What is the run time for Insert and FindMin?

Less flexibility → More speed

• Lists
 › If sorted: FindMin is O(1) but Insert is O(N)
 › If not sorted: Insert is O(1) but FindMin is O(N)
• Balanced Binary Search Trees (BSTs)
 › Insert is O(log N) and FindMin is O(log N)
• BSTs look good but...
 › BSTs are efficient for all Finds, not just FindMin
 › We only need FindMin

Better than a speeding BST

• We can do better than Balanced Binary Search Trees?
 › Very limited requirements: Insert, FindMin, DeleteMin
 › FindMin is O(1)
 › Insert is O(log N)
 › DeleteMin is O(log N)
Binary Heaps

- A binary heap is a binary tree that is:
 - Complete: the tree is completely filled except possibly the bottom level, which is filled from left to right
 - Satisfies the heap order property:
 - every node is less than or equal to its children
 - or every node is greater than or equal to its children
 - The root node is always the smallest node
 - or the largest, depending on the heap order

Heap order property

- A heap provides limited ordering information:
 - Each path is sorted, but the subtrees are not sorted relative to each other
 - A binary heap is NOT a binary search tree

Binary Heap vs Binary Search Tree

- **Binary Heap**
 - Parent is less than both left and right children

- **Binary Search Tree**
 - Parent is greater than left child, less than right child

Structure property

- A binary heap is a complete tree:
 - All nodes are in use except for possibly the right end of the bottom row

Examples

- Complete tree, heap order is "max"
- Complete tree, heap order is "min"
- Complete tree, but root heap order is broken

Array Implementation of Heaps (Implicit Pointers)

- Root node = A[1]
- Keep track of current size N (number of nodes)
FindMin and DeleteMin

- **FindMin**: Easy!
 - Return root value \(A[1] \)
 - Run time = ?

- **DeleteMin**:
 - Delete (and return) value at root node

DeleteMin

- Delete (and return) value at root node

Maintain the Structure Property

- We now have a “Hole” at the root
 - Need to fill the hole with another value
- When we get done, the tree will have one less node and must still be complete

Maintain the Heap Property

- The last value has lost its node
 - We need to find a new place for it
- We can do a simple insertion sort operation to find the correct place for it in the tree

DeleteMin: Percolate Down

- Copy smaller child up and go down one level
- Done if both children are \(\geq \) item or reached a leaf node
- What is the run time?

Percolate Down

```c
PercolateDown(i:integer, x:integer): 
// \( N \) is the number of entries in queue/
\( j \) : integer;
Case:
2i > N : \( A[i] := x; \) //at bottom//
2i = N : if \( A[2i] < x \) then
else \( A[i] := x; \)
2i < N : if \( A[2i] < A[2i+1] \) then \( j := 2i; \)
else \( j := 2i+1; \)
if \( A[j] < x \) then
  \( A[i] := A[j]; \) PercolateDown(j,x);
else \( A[i] := x; \)
}
```
DeleteMin: Run Time Analysis

- Run time is $O(\text{depth of heap})$
- A heap is a complete binary tree
- Depth of a complete binary tree of N nodes?
 - $\text{depth} = \lfloor \log_2(N) \rfloor$
- Run time of DeleteMin is $O(\log N)$

Insert

- Add a value to the tree
- Structure and heap order properties must still be correct when we are done

Maintain the Structure Property

- The only valid place for a new node in a complete tree is at the end of the array
- We need to decide on the correct value for the new node, and adjust the heap accordingly

Maintain the Heap Property

- The new value goes where?
- We can do a simple insertion sort operation to find the correct place for it in the tree

Insert: Percolate Up

- Start at last node and keep comparing with parent $A[i/2]$
- If parent larger, copy parent down and go up one level
- Done if parent \leq item or reached top node $A[1]$
- Run time?

Insert: Done

- Run time?
PercUp

- Class participation
- Define PercUp which percolates new entry to correct spot.
- Note: the parent of i is i/2

```
PercUp(i : integer, x : integer): {

}
```

Sentinel Values

- Every iteration of Insert needs to test:
 - if it has reached the top node A[1]
 - if parent < item
- Can avoid first test if A[0] contains a very large negative value
 - sentinel < item, for all items
- Second test alone always stops at top

![Binary Heap Analysis Diagram]

- Space needed for heap of N nodes: \(O(\text{MaxN})\)
 - An array of size MaxN, plus a variable to store the size N, plus an array slot to hold the sentinel
- Time
 - FindMin: \(O(1)\)
 - DeleteMin and Insert: \(O(\log N)\)
 - BuildHeap from N inputs: \(O(N)\)

![Build Heap Diagram]

```
BuildHeap {
  for i = N/2 to 1 by -1 PercDown(i,A[i])
}
```

Build Heap

```
BuildHeap {
  for i = N/2 to 1 by -1 PercDown(i,A[i])
}
```

```
Build Heap {
  for i = N/2 to 1 by -1 PercDown(i,A[i])
}
```
Analysis of Build Heap

- Assume \(N = 2^k - 1 \)
 - Level 1: \(k - 1 \) steps for 1 item
 - Level 2: \(k - 2 \) steps of 2 items
 - Level 3: \(k - 3 \) steps for 4 items
 - Level \(i \): \(k - i \) steps for \(2^{i-1} \) items

\[
\text{Total Steps} = \sum_{i=1}^{k-1} (k-i)2^{i-1} = 2^k - k - 1 = O(N)
\]

Other Heap Operations

- Find(X, H): Find the element X in heap H of N elements
 - What is the running time? \(O(N) \)
- FindMax(H): Find the maximum element in H
 - What is the running time? \(O(N) \)
- We sacrificed performance of these operations in order to get \(O(1) \) performance for FindMin

Other Heap Operations

- DecreaseKey(P, \(\Delta \), H): Decrease the key value of node at position P by a positive amount \(\Delta \). eg, to increase priority
 - First, subtract \(\Delta \) from current value at P
 - Heap order property may be violated
 - so percolate up to fix
 - Running Time: \(O(\log N) \)

Other Heap Operations

- IncreaseKey(P, \(\Delta \), H): Increase the key value of node at position P by a positive amount \(\Delta \). eg, to decrease priority
 - First, add \(\Delta \) to current value at P
 - Heap order property may be violated
 - so percolate down to fix
 - Running Time: \(O(\log N) \)

Other Heap Operations

- Delete(P, H): E.g. Delete a job waiting in queue that has been preemptively terminated by user
 - Use DecreaseKey(P, \(\infty \), H) followed by DeleteMin
 - Running Time: \(O(\log N) \)

Other Heap Operations

- Merge(H1, H2): Merge two heaps H1 and H2 of size \(O(N) \). H1 and H2 are stored in two arrays.
 - Can do \(O(N) \) Insert operations: \(O(N \log N) \) time
 - Better: Copy H2 at the end of H1 and use BuildHeap. Running Time: \(O(N) \)
PercUp Solution

PercUp(i : integer, x : integer): {
 if i = 1 then A[1] := x
 else if A[i/2] < x then
 A[i] := x;
 else
 A[i] := A[i/2];
 PercUp(i/2, x);
}