Splay Trees and B-Trees

CSE 373
Data Structures
Lecture 9
Readings and References

- Reading
 - Sections 4.5-4.7
Self adjustment for better living

• Ordinary binary search trees have no balance conditions
 › what you get from insertion order is it
• Balanced trees like AVL trees enforce a balance condition when nodes change
 › tree is always balanced after an insert or delete
• Self-adjusting trees get reorganized over time as nodes are accessed
Splay Trees

• Splay trees are tree structures that:
 › Are not perfectly balanced all the time
 › Data most recently accessed is near the root.

• The procedure:
 › After node X is accessed, perform “splaying” operations to bring X to the root of the tree.
 › Do this in a way that leaves the tree more balanced as a whole
Splay Tree Terminology

- Let X be a non-root node with ≥ 2 ancestors.
 - P is its parent node.
 - G is its grandparent node.
Zig-Zig and Zig-Zag

Parent and grandparent in same direction.

Zig-zig

Parent and grandparent in different directions.

Zig-zag
Splay Tree Operations

1. Helpful if nodes contain a parent pointer.

2. When X is accessed, apply one of six rotation routines.
 • Single Rotations (X has a P (the root) but no G)
 ZigFromLeft, ZigFromRight
 • Double Rotations (X has both a P and a G)
 ZigZigFromLeft, ZigZigFromRight
 ZigZagFromLeft, ZigZagFromRight
Zig at depth 1

- “Zig” is just a single rotation, as in an AVL tree
- Let R be the node that was accessed (e.g. using Find)

ZigFromLeft moves R to the top → faster access next time
Zig at depth 1

• Suppose Q is now accessed using Find

• ZigFromRight moves Q back to the top
Zig-Zag operation

• “Zig-Zag” consists of two rotations of the opposite direction (assume R is the node that was accessed)

ZigZagFromLeft

10/18/02 Splay Trees and B-Trees - Lecture 9
Zig-Zig operation

• “Zig-Zig” consists of two single rotations of the same direction (R is the node that was accessed)
Decreasing depth - "autobalance"

Find(T) Find(R)
Splay Tree Insert and Delete

• Insert x
 › Insert x as normal then splay x to root.

• Delete
 › Splay x to root and remove it. Two trees remain, right subtree an left subtree.
 › Splay the max in the left subtree to the root
 › Attach the right subtree to the new root of the left subtree.
Example Insert

- Inserting in order 1, 2, 3, ..., 8
- Without self-adjustment

O(n^2) time
With Self-Adjustment
With Self-Adjustment

O(n) time!!
Example Deletion

![Diagram showing deletion process in splay trees]

- Initial tree with 8 to be deleted.
- Splay operation on 8.
- Removal of 8 and attaching its right child.

Splay Trees and B-Trees - Lecture 9
Analysis of Splay Trees

• Splay trees tend to be balanced
 › M operations takes time $O(M \log N)$ for $M \geq N$ operations on N items.
 › Amortized $O(\log n)$ time.

• Splay trees have good “locality” properties
 › Recently accessed items are near the root of the tree.
 › Items near an accessed are pulled toward the root.
Beyond Binary Search Trees: Multi-Way Trees

- B-tree of order 3 has 2 or 3 children per node

- Search for 8
B-Trees

B-Trees are multi-way search trees commonly used in database systems or other applications where data is stored externally on disks and keeping the tree shallow is important.

A B-Tree of order M has the following properties:
1. The root is either a leaf or has between 2 and M children.
2. All nonleaf nodes (except the root) have between $\lceil M/2 \rceil$ and M children.
3. All leaves are at the same depth.

All data records are stored at the leaves.
Leaves store between $\lceil M/2 \rceil$ and M data records.
B-Tree Details

Each (non-leaf) internal node of a B-tree has:

- Between ⌊M/2⌋ and M children.
- Up to M-1 keys $k_1 < k_2 < \ldots < k_{M-1}$

Keys are ordered so that:

$k_1 < k_2 < \ldots < k_{M-1}$
Properties of B-Trees

Children of each internal node are "between" the items in that node. Suppose subtree T_i is the ith child of the node:

- All keys in T_i must be between keys k_{i-1} and k_i

 i.e. $k_{i-1} \leq T_i < k_i$

 k_{i-1} is the smallest key in T_i

All keys in first subtree $T_1 < k_1$

All keys in last subtree $T_M \geq k_{M-1}$
Example: Searching in B-trees

- B-tree of order 3: also known as 2-3 tree (2 to 3 children)

- Examples: Search for 9, 14, 12
- Note: If leaf nodes are connected as a Linked List, B-tree is called a B+ tree – Allows sorted list to be accessed easily

- means empty slot
Inserting into B-Trees

- Insert X: Do a Find on X and find appropriate leaf node
 - If leaf node is not full, fill in empty slot with X
 - E.g. Insert 5
 - If leaf node is full, split leaf node and adjust parents up to root node
 - E.g. Insert 9
Deleting From B-Trees

• Delete X: Do a find and remove from leaf
 › Leaf underflows – borrow from a neighbor
 • E.g. 11
 › Leaf underflows and can’t borrow – merge nodes, delete parent
 • E.g. 17

```
3 4   6 7 8   11 12   13 14   17 18
```

```
3 4 6 7 8 11 12 13 14 17 18
```

10/18/02 Splay Trees and B-Trees - Lecture 9
Run Time Analysis of B-Tree Operations

• For a B-Tree of order M
 › Each internal node has up to M-1 keys to search
 › Each internal node has between ⌊M/2⌋ and M children
 › Depth of B-Tree storing N items is \(O(\log \lfloor M/2 \rfloor N)\)

• Find: Run time is:
 › \(O(\log M)\) to binary search which branch to take at each node
 › Total time to find an item is \(O(\text{depth} \times \log M) = O(\log N)\)
Summary of Search Trees

- Problem with Search Trees: Must keep tree balanced to allow
 - fast access to stored items
- AVL trees: Insert/Delete operations keep tree balanced
- Splay trees: Repeated Find operations produce balanced trees
- Multi-way search trees (e.g. B-Trees): More than two children
 - per node allows shallow trees; all leaves are at the same depth
 - keeping tree balanced at all times