AVL Trees

CSE 373
Data Structures
Lecture 8
Readings and References

• Reading
 › Section 4.4,
Binary Search Tree - Best Time

• All BST operations are $O(d)$, where d is tree depth
• minimum d is $d = \lceil \log_2 N \rceil$ for a binary tree with N nodes
 › What is the best case tree?
 › What is the worst case tree?
• So, best case running time of BST operations is $O(\log N)$
Binary Search Tree - Worst Time

• Worst case running time is $O(N)$
 › What happens when you Insert elements in ascending order?
 • Insert: 2, 4, 6, 8, 10, 12 into an empty BST
 › Problem: Lack of “balance”:
 • compare depths of left and right subtree
 › Unbalanced degenerate tree
Balanced and unbalanced BST
Approaches to balancing trees

• Don't balance
 › May end up with some nodes very deep

• Strict balance
 › The tree must always be balanced perfectly

• Pretty good balance
 › Only allow a little out of balance

• Adjust on access
 › Self-adjusting
Balancing Trees

• Many algorithms exist for keeping trees balanced
 › Adelson-Velskii and Landis (AVL) trees
 › Splay trees and other self-adjusting trees
 › B-trees and other multiway search trees
Perfect Balance

- Want a complete tree after every operation
 - tree is full except possibly in the lower right
- This is expensive
 - For example, insert 2 in the tree on the left and then rebuild as a complete tree
AVL - Pretty Good Balance

- AVL trees are height-balanced binary search trees
- **Balance factor** of a node
 - $\text{height(left subtree)} - \text{height(right subtree)}$
- An AVL tree has balance factor calculated at every node
 - For every node, heights of left and right subtree can differ by no more than 1
 - Store current heights in each node
Height of an AVL Tree

- $N(h) =$ minimum number of nodes in an AVL tree of height h.
- **Basis**
 - $N(0) = 1$, $N(1) = 2$
- **Induction**
 - $N(h) = N(h-1) + N(h-2) + 1$
- **Solution**
 - $N(h) \geq \phi^h$ ($\phi \approx 1.62$)
Height of an AVL Tree

• $N(h) \geq \phi^h$ ($\phi \approx 1.62$)
• Suppose we have n nodes in an AVL tree of height h.
 › $n \geq N(h)$
 › $n \geq \phi^h$
 › $\log_\phi n \geq h$ (relatively well balanced tree!!)
Node Heights

height of node = h
balance factor = $h_{\text{left}} - h_{\text{right}}$
empty height = -1
Node Heights after Insert 7

height of node = h

balance factor = $h_{left} - h_{right}$

empty height = -1

balance factor 1-(-1) = 2
Insert and Rotation in AVL Trees

• Insert operation may cause balance factor to become 2 or –2 for some node
 › only nodes on the path from insertion point to root node have possibly changed in height
 › So after the Insert, go back up to the root node by node, updating heights
 › If a new balance factor (the difference $h_{\text{left}} - h_{\text{right}}$) is 2 or –2, adjust tree by rotation around the node
Single Rotation in an AVL Tree
Insertions in AVL Trees

Let the node that needs rebalancing be α.

There are 4 cases:

Outside Cases (require single rotation):
1. Insertion into left subtree of left child of α.
2. Insertion into right subtree of right child of α.

Inside Cases (require double rotation):
3. Insertion into right subtree of left child of α.
4. Insertion into left subtree of right child of α.

The rebalancing is performed through four separate rotation algorithms.
AVL Insertion: Outside Case

Consider a valid AVL subtree
AVL Insertion: Outside Case

Inserting into X destroys the AVL property at node j
AVL Insertion: Outside Case

Do a “right rotation”
Single right rotation

Do a “right rotation”
Outside Case Completed

“Right rotation” done!
(“Left rotation” is mirror symmetric)

AVL property has been restored!
AVL Insertion: Inside Case

Consider a valid AVL subtree
AVL Insertion: Inside Case

Inserting into Y destroys the AVL property at node j

Does “right rotation” restore balance?
AVL Insertion: Inside Case

“Right rotation” does not restore balance... now k is out of balance
AVL Insertion: Inside Case

Consider the structure of subtree Y...
AVL Insertion: Inside Case

\[Y = \text{node } i \text{ and subtrees } V \text{ and } W \]

\[\text{Y = node } i \text{ and subtrees } V \text{ and } W \]

\[j \]

\[k \]

\[i \]

\[Z \]

\[X \]

\[V \]

\[W \]

\[h \]

\[h + 1 \]

\[h \]

\[h \text{ or } h - 1 \]

\[h \text{ or } h - 1 \]
AVL Insertion: Inside Case

We will do a left-right “double rotation” . . .
Double rotation: first rotation

left rotation complete
Double rotation: second rotation

Now do a right rotation
Double rotation: second rotation

right rotation complete

Balance has been restored to the universe

10/16/02
Implementation

balance (1,0,-1)
key
left
right
Single Rotation

```cpp
RotateFromRight(n : reference node pointer) {
    p : node pointer;
    p := n.right;
    n.right := p.left;
    p.left := n;
    n := p
}
```
Double Rotation

- Class participation
- Implement Double Rotation in two lines.

```java
DoubleRotateFromRight(n : reference node pointer) {
    ???
    n
}
```
AVL Tree Deletion

• Similar to insertion
 › Rotations and double rotations needed to rebalance
 › Imbalance may propagate upward so that many rotations may be needed.
Pros and Cons of AVL Trees

Arguments for AVL trees:
1. Search is $O(\log N)$ since AVL trees are always balanced.
2. The height balancing adds no more than a constant factor to the speed of insertion.

Arguments against using AVL trees:
1. Difficult to program & debug; more space for height info.
2. Asymptotically faster but rebalancing costs time.
3. Most large searches are done in database systems on disk and use other structures (e.g. B-trees).
4. May be OK to have $O(N)$ for a single operation if total run time for many consecutive operations is fast (e.g. Splay trees).
Double Rotation Solution

DoubleRotateFromRight(n : reference node pointer) {
 RotateFromLeft(n.right);
 RotateFromRight(n);
}