
1R. Rao, CSE 373 Lecture 1

CSE 373 Lecture 2: Mathematical Background

✦ Today, we will review:
� Logs and exponents
� Series
� Recursion
� Big-Oh notation for analysis of algorithms

✦ Covered in Chapters 1 and 2 of the text

2R. Rao, CSE 373 Lecture 1

Logs and exponents

✦ We will be dealing mostly with binary numbers (base 2)

✦ Definition: logX B = A means XA = B

✦ Any base is equivalent to base 2 within a constant factor:

✦ Why?

X

B
BX

2

2

log

log
log =

3R. Rao, CSE 373 Lecture 1

Logs and exponents

✦ We will be dealing mostly with binary numbers (base 2)

✦ Definition: logX B = A means XA = B

✦ Any base is equivalent to base 2 within a constant factor:

✦ Why?

✦ Because: if R = log2 B, S = log2 X, and T = logX B,

� 2R = B, 2S = X, and XT = B

� 2R = XT = 2ST i.e. R = ST and therefore, T = R/S.

X

B
BX

2

2

log

log
log =

4R. Rao, CSE 373 Lecture 1

Properties of logs (of the mathematical kind)

✦ We will assume logs to base 2 unless specified otherwise

✦ log AB = log A + log B (note: log AB ≠ log A•log B)

✦ log A/B = log A – log B (note: log A/B ≠ log A / log B)

✦ log AB = B log A (note: log AB ≠ (log A) B = log B A)

✦ log log X < log X < X for all X > 0

� log log X = Y means
� log X grows slower than X; called a “sub-linear” function

✦ log 1 = 0, log 2 = 1, log 1024 = 10

X
Y

=22

5R. Rao, CSE 373 Lecture 1

Arithmetic Series

✦

✦ The sum is: S(1) = 1, S(2) = 3, S(3) = 6, S(4) = 10, …

✦ Is S(N) = N(N+1)/2 ?
� Prove by induction (base case: N = 1, S(N) = 1(2)/2 = 1)
� Assume true for N = k: S(k) = k(k+1)/2
� Suppose N = k+1.
� S(k+1) = 1 + 2 + …+ k + (k+1) = S(k) + (k+1)

= k(k+1)/2 + (k+1) = (k+1)(k/2 + 1) = (k+1)(k+2)/2. ✔

✦

∑
=

==+++=
N

i

iNNS
1

?21)(K

∑
=

+=
N

i

NN
i

1 2

)1(
Why is this formula useful?

6R. Rao, CSE 373 Lecture 1

A Sneak Preview of Algorithm Analysis

✦ Consider the following program segment:
for (i = 1; i <= N; i++)

for (j = 1; j <= i; j++)
printf(“Hello\n”);

✦ How many times is “printf” executed?
� Or, How many Hello’s will you see?

7R. Rao, CSE 373 Lecture 1

A Sneak Preview of Algorithm Analysis

✦ The program segment being analyzed:
for (i = 1; i <= N; i++)

for (j = 1; j <= i; j++)
printf(“Hello\n”);

✦ Inner loop executes “printf” i times in the ith iteration

✦ There are N iterations in the outer loop (i goes from 1 to N)

✦ Total number of times “printf” is executed =

✦ Congratulations - You’ve just analyzed your first program!
� Running time of the program is proportional to N(N+1)/2 for all N.

∑
=

+=
N

i

NN
i

1 2

)1(

8R. Rao, CSE 373 Lecture 1

Other Important Series (know them well!)

✦ Sum of squares:

✦ Sum of exponents:

✦ Harmonic series (k = -1):

� loge N (or ln N) is the natural log of N

✦ Geometric series:

Nlargefor
36

)12)(1(3

1

2 NNNN
i

N

i

≈++=∑
=

-1kandNlargefor
|1|

1

1

≠
+

≈
+

=
∑

k

N
i

kN

i

k

Nlargeforlog
1

1

N
i e

N

i

≈∑
=

1

11

0 −
−=

+

=
∑

A

A
A

NN

i

i

9R. Rao, CSE 373 Lecture 1

Recursion

✦ A function that calls itself is said to be recursive
� We encountered a recursive procedure “sum” in the first lecture

✦ Recursion may be a natural way to program certain
functions that involve repetitive calculations (as
compared to iteration by “for” or “while” loops)

✦ Classic example: Fibonacci numbers Fn

1, 1, 2, 3, 5, 8, 13, 21, 34, …

� First two are defined to be 1
� Rest are sum of preceding two
� Fn = Fn-1 + Fn-2 (n > 1)

Leonardo Pisano
Fibonacci (1170-1250) 10R. Rao, CSE 373 Lecture 1

Recursive Procedure for Fibonacci Numbers

✦ int fib(int i) {

if (i < 0) return 0; //invalid input

if (i == 0 || i == 1) return 1; //base cases

else return fib(i-1)+fib(i-2);

}

✦ Easy to write: looks like the definition of Fn

✦ But, can you spot a big problem?

11R. Rao, CSE 373 Lecture 1

Recursive Calls of Fibonacci Procedure

✦ Wastes precious time by re-computing fib(N-i) multiple
times, for i = 2, 3, 4, etc.!

12R. Rao, CSE 373 Lecture 1

Iterative Procedure for Fibonacci Numbers

✦ int fib_iter(int i) {
int fib0 = 1, fib1 = 1, fibj = 1;
if (i < 0) return 0; //invalid input
for (int j = 2; j <= i; j++) { //calculate all fib nos. up to i

fibj = fib0 + fib1;
fib0 = fib1;
fib1 = fibj;

}
return fibj;

}

✦ More variables and more bookkeeping but avoids
repetitive calculations and saves time.
� How much time is saved over the recursive procedure?
� Answer in next class…

13R. Rao, CSE 373 Lecture 1

Recursion Summary

✦ Recursion may simplify programming, but beware of
generating large numbers of calls
� Function calls can be expensive in terms of time and space
� There is a hidden space cost associated with the system’s stack

✦ Be sure to get the base case(s) correct!

✦ Each step must get you closer to the base case

✦ You may use induction to prove your program is correct
� See example in previous lecture

14R. Rao, CSE 373 Lecture 1

Motivation for Big-Oh Notation

✦ Suppose you are given two algorithms A and B for
solving a problem

✦ Here is the running time TA(N) and TB(N) of A and B as a
function of input size N:

Which algorithm

would you choose?

TA

TB

R
un

T
im

e

Input Size N

15R. Rao, CSE 373 Lecture 1

Motivation for Big-Oh Notation (cont.)

✦ For large N, the running time of A and B is:

R
un

T
im

e

Input Size N

Now which

algorithm would

you choose?

TA(N) = 50N

TB(N) = N2

16R. Rao, CSE 373 Lecture 1

Motivation for Big-Oh: Asymptotic Behavior

✦ In general, what really matters is the “asymptotic”
performance as N → ∞, regardless of what happens for
small input sizes N.

✦ Performance for small input sizes may matter in practice,
if you are sure that small N will be common
� This is usually not the case for most applications

✦ Given functions T1(N) and T2(N) that define the running
times of two algorithms, we need a way to decide which
one is better (i.e. asymptotically smaller)
� Big-Oh notation

17R. Rao, CSE 373 Lecture 1

Big-Oh Notation

✦ T(N) = O(f(N)) if there are positive constants c and n0

such that T(N) ≤ cf(N) for N ≥ n0.

✦ We say that T(N) is “big-oh” of f(N) (or, order of f(N))

✦ Example 1: Suppose T(N) = 50N. Then, T(N) = O(N)
� Take c = 50 and n0 = 1

✦ Example 2: Suppose T(N) = 50N+11. Then, T(N) = O(N)
� T(N) ≤ 50N+11N = 61N for N ≥ 1. So, c = 61 and n0 = 1 works

✦ Example 3: TA(N) = 50N, TB(N) = N2.

Show that TA(N) = O(TB(N)): what works for c and n0?

18R. Rao, CSE 373 Lecture 1

Big-Oh Notation

✦ T(N) = O(f(N)) if there are positive constants c and n0

such that T(N) ≤ cf(N) for N ≥ n0.

✦ We say that T(N) is “big-oh” of f(N) or order of f(N)

✦ Example 1: Suppose T(N) = 50N. Then, T(N) = O(N)
� Take c = 50 and n0 = 1

✦ Example 2: Suppose T(N) = 50N+11. Then, T(N) = O(N)
� T(N) ≤ 50N+11N = 61N for N ≥ 1. So, c = 61 and n0 = 1 works

✦ Example 3: TA(N) = 50N, TB(N) = N2.

TA(N) = O(TB(N)): choose c = 1 and n0 = 50

19R. Rao, CSE 373 Lecture 1

Common functions we will encounter…

O(2N)Exponential

O(N3)Cubic

O(N2)Quadratic

O(N log N)N log N

O(N)Linear

O((log N)2)Log squared

O(log N)Logarithmic

O(log log N)Log log

O(1)Constant

Big-OhName

}Polynomial timeIn
cr

ea
si

ng
co

st

20R. Rao, CSE 373 Lecture 1

Next Lecture: Using Big-Oh for Algorithm Analysis

To do:

Finish reading Chapters 1 and 2

Set up your account at MSCC lab

