CSE 373 Lecture 2: Mathematical Background

- Today, we will review:
\Rightarrow Logs and exponents
\Rightarrow Series
\Rightarrow Recursion
\Rightarrow Big-Oh notation for analysis of algorithms
- Covered in Chapters 1 and 2 of the text

Logs and exponents

- We will be dealing mostly with binary numbers (base 2)
- Definition: $\log _{\mathrm{X}} \mathrm{B}=\mathrm{A}$ means $\mathrm{X}^{\mathrm{A}}=\mathrm{B}$
- Any base is equivalent to base 2 within a constant factor:
$\log _{X} B=\frac{\log _{2} B}{\log _{2} X}$
- Why?
- Because: if $R=\log _{2} B, S=\log _{2} X$, and $T=\log _{X} B$,
$\therefore 2^{\mathrm{R}}=\mathrm{B}, 2^{\mathrm{S}}=\mathrm{X}$, and $\mathrm{X}^{\mathrm{T}}=\mathrm{B}$
$\Rightarrow 2^{\mathrm{R}}=\mathrm{X}^{\mathrm{T}}=2^{\mathrm{ST}}$ i.e. $\mathrm{R}=\mathrm{ST}$ and therefore, $\mathrm{T}=\mathrm{R} / \mathrm{S}$.
R. Rao, CSE 373 Lecture 1

Properties of logs (of the mathematical kind)

- We will assume logs to base 2 unless specified otherwise
- $\log \mathrm{AB}=\log \mathrm{A}+\log \mathrm{B} \quad($ note: $\log \mathrm{AB} \neq \log \mathrm{A} \cdot \log \mathrm{B})$
- $\log \mathrm{A} / \mathrm{B}=\log \mathrm{A}-\log \mathrm{B} \quad($ note: $\log \mathrm{A} / \mathrm{B} \neq \log \mathrm{A} / \log \mathrm{B})$
- $\log \mathrm{A}^{\mathrm{B}}=\mathrm{B} \log \mathrm{A} \quad\left(\right.$ note: $\left.\log \mathrm{A}^{\mathrm{B}} \neq(\log \mathrm{A})^{\mathrm{B}}=\log ^{\mathrm{B}} \mathrm{A}\right)$
- $\log \log \mathrm{X}<\log \mathrm{X}<\mathrm{X}$ for all $\mathrm{X}>0$
$\Rightarrow \log \log \mathrm{X}=\mathrm{Y}$ means $2^{2^{r}}=X$
$\Rightarrow \log \mathrm{X}$ grows slower than X ; called a "sub-linear" function
$-\log 1=0, \log 2=1, \log 1024=10$

Arithmetic Series

- $S(N)=1+2+\ldots+N=\sum_{i=1}^{N} i=$?
- The sum is: $S(1)=1, S(2)=3, S(3)=6, S(4)=10, \ldots$
- Is $\mathrm{S}(\mathrm{N})=\mathrm{N}(\mathrm{N}+1) / 2$?
\triangleright Prove by induction (base case: $\mathrm{N}=1, \mathrm{~S}(\mathrm{~N})=1(2) / 2=1)$
\Rightarrow Assume true for $\mathrm{N}=\mathrm{k}: \mathrm{S}(\mathrm{k})=\mathrm{k}(\mathrm{k}+1) / 2$
Suppose $\mathrm{N}=\mathrm{k}+1$.
$\Rightarrow \mathrm{S}(\mathrm{k}+1)=1+2+\ldots+\mathrm{k}+(\mathrm{k}+1)=\mathrm{S}(\mathrm{k})+(\mathrm{k}+1)$
$=k(k+1) / 2+(k+1)=(k+1)(k / 2+1)=(k+1)(k+2) / 2 . \quad \vee$
- $\sum_{i=1}^{N} i=\frac{N(N+1)}{2} \quad$ Why is this formula useful?

A Sneak Preview of Algorithm Analysis

- The program segment being analyzed:
for ($\mathrm{i}=1 ; \mathrm{i}<=\mathrm{N} ; \mathrm{i}++$) for $(j=1 ; j<=i ; j++)$ printf("Hello\n");
- Inner loop executes "printf" i times in the $i^{\text {th }}$ iteration
- There are N iterations in the outer loop (i goes from 1 to N)
- Total number of times "printf" is executed =
$\sum_{i=1}^{N} i=\frac{N(N+1)}{2}$
- Congratulations - You've just analyzed your first program! \Rightarrow Running time of the program is proportional to $\mathrm{N}(\mathrm{N}+1) / 2$ for all N

[^0]Other Important Series (know them well!)

- Sum of squares: $\quad \sum_{i=1}^{N} i^{2}=\frac{N(N+1)(2 N+1)}{6} \approx \frac{N^{3}}{3}$ for large N
- Sum of exponents: $\sum_{i=1}^{N} i^{k} \approx \frac{N^{k+1}}{|k+1|}$ for large N and $\mathrm{k} \neq-1$
- Harmonic series $(k=-1): \sum_{i=1}^{N} \frac{1}{i} \approx \log _{e} N$ for large N
$\triangleright \log _{e} N($ or $\ln N)$ is the natural \log of N
- Geometric series: $\sum_{i=0}^{N} A^{i}=\frac{A^{N+1}-1}{A-1}$

Recursion

- A function that calls itself is said to be recursive \Rightarrow We encountered a recursive procedure "sum" in the first lecture
- Recursion may be a natural way to program certain functions that involve repetitive calculations (as compared to iteration by "for" or "while" loops)
- Classic example: Fibonacci numbers F_{n}
$1,1,2,3,5,8,13,21,34, \ldots \bigcirc \circ \circ$
\Longleftrightarrow First two are defined to be 1 \leftrightharpoons Rest are sum of preceding two $\Leftrightarrow \mathrm{F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}-1}+\mathrm{F}_{\mathrm{n}-2}(\mathrm{n}>1)$

Recursive Procedure for Fibonacci Numbers

- int fib(int i) \{
if ($\mathrm{i}<0$) return $0 ; / /$ invalid input
if ($\mathrm{i}==0| | \mathrm{i}==1$) return 1; //base cases else return fib(i-1)+fib(i-2);
\}
- Easy to write: looks like the definition of F_{n}
- But, can you spot a big problem?

Recursive Calls of Fibonacci Procedure

- Wastes precious time by re-computing fib(N-i) multiple times, for $\mathrm{i}=2,3,4$, etc.!

Iterative Procedure for Fibonacci Numbers

```
* int fib_iter(int i)
    nt fibO = 1, fib1 = 1, fibj = 1;
        If (i<0) retum 0; /invalid input
        for (int j= 2; j <= i; j++) { //calculate all fib nos. up to i
            fibj = fib0 + fib1.
            fib0 = fib1;
            fib1 = fibj;
        }
        return fibj;
    }
- More variables and more bookkeeping but avoids repetitive calculations and saves time.
\(\Rightarrow\) How much time is saved over the recursive procedure?
\(\curvearrowleft\) Answer in next class...
```


Recursion Summary

- Recursion may simplify programming, but beware of generating large numbers of calls
\Rightarrow Function calls can be expensive in terms of time and space
ϕ There is a hidden space cost associated with the system's stack
- Be sure to get the base case(s) correct!
- Each step must get you closer to the base case
- You may use induction to prove your program is correct \Rightarrow See example in previous lecture

Motivation for Big-Oh Notation

- Suppose you are given two algorithms A and B for solving a problem
- Here is the running time $T_{A}(N)$ and $T_{B}(N)$ of A and B as a function of input size N :

Which algorithm would you choose?

Motivation for Big-Oh Notation (cont.)

- For large N , the running time of A and B is:
R. Rao, CSE 373 Lecture 1 \quad Now which

Motivation for Big-Oh: Asymptotic Behavior

- In general, what really matters is the "asymptotic" performance as $\mathrm{N} \rightarrow \infty$, regardless of what happens for small input sizes N .
- Performance for small input sizes may matter in practice, if you are sure that small N will be common \Rightarrow This is usually not the case for most applications
\bullet Given functions $T_{1}(N)$ and $T_{2}(N)$ that define the running times of two algorithms, we need a way to decide which one is better (i.e. asymptotically smaller)
\Rightarrow Big-Oh notation
R. Rao, CSE 373 Lecture 1

Big-Oh Notation

$-T(N)=O(f(N))$ if there are positive constants c and n_{0} such that $\mathrm{T}(\mathrm{N}) \leq \mathrm{cf}(\mathrm{N})$ for $\mathrm{N} \geq \mathrm{n}_{0}$.

- We say that $T(N)$ is "big-oh" of $f(N)$ (or, order of $f(N)$)
\rightarrow Example 1: Suppose $T(N)=50 N$. Then, $T(N)=O(N)$ \therefore Take $\mathrm{c}=50$ and $\mathrm{n}_{0}=1$
- Example 2: Suppose $\mathrm{T}(\mathrm{N})=50 \mathrm{~N}+11$. Then, $\mathrm{T}(\mathrm{N})=\mathrm{O}(\mathrm{N})$ $\therefore \mathrm{T}(\mathrm{N}) \leq 50 \mathrm{~N}+11 \mathrm{~N}=61 \mathrm{~N}$ for $\mathrm{N} \geq 1$. So, $\mathrm{c}=61$ and $\mathrm{n}_{0}=1$ works
- Example 3: $\mathrm{T}_{\mathrm{A}}(\mathrm{N})=50 \mathrm{~N}, \mathrm{~T}_{\mathrm{B}}(\mathrm{N})=\mathrm{N}^{2}$.

Show that $\mathrm{T}_{\mathrm{A}}(\mathrm{N})=\mathrm{O}\left(\mathrm{T}_{\mathrm{B}}(\mathrm{N})\right)$: what works for c and n_{0} ?

Big-Oh Notation

$\rightarrow \mathrm{T}(\mathrm{N})=\mathrm{O}(\mathrm{f}(\mathrm{N}))$ if there are positive constants c and n_{0} such that $\mathrm{T}(\mathrm{N}) \leq \mathrm{cf}(\mathrm{N})$ for $\mathrm{N} \geq \mathrm{n}_{0}$.

- We say that $T(N)$ is "big-oh" of $f(N)$ or order of $f(N)$
\rightarrow Example 1: Suppose $T(N)=50 N$. Then, $T(N)=O(N)$ \Rightarrow Take $\mathrm{c}=50$ and $\mathrm{n}_{0}=1$
- Example 2: Suppose $T(N)=50 N+11$. Then, $T(N)=O(N)$ $\Rightarrow \mathrm{T}(\mathrm{N}) \leq 50 \mathrm{~N}+11 \mathrm{~N}=61 \mathrm{~N}$ for $\mathrm{N} \geq 1$. So, $\mathrm{c}=61$ and $\mathrm{n}_{0}=1$ works
- Example 3: $\mathrm{T}_{\mathrm{A}}(\mathrm{N})=50 \mathrm{~N}, \mathrm{~T}_{\mathrm{B}}(\mathrm{N})=\mathrm{N}^{2}$.
$\mathrm{T}_{\mathrm{A}}(\mathrm{N})=\mathrm{O}\left(\mathrm{T}_{\mathrm{B}}(\mathrm{N})\right.$): choose $\mathrm{c}=1$ and $\mathrm{n}_{0}=50$

Common functions we will encounter...

	Name	Big-Oh
	Constant	$\mathrm{O}(1)$
	Log log	$\mathrm{O}(\log \log \mathrm{N})$
	Logarithmic	$\mathrm{O}(\log \mathrm{N})$
	Log squared	$\mathrm{O}\left((\log \mathrm{N})^{2}\right)$
	Linear	$\mathrm{O}(\mathrm{N})$
	$\mathrm{N} \log \mathrm{N}$	$\mathrm{O}(\mathrm{N} \log \mathrm{N})$
	Quadratic	$\mathrm{O}\left(\mathrm{N}^{2}\right)$
	Cubic	$\mathrm{O}\left(\mathrm{N}^{3}\right)$
	Exponential	$\mathrm{O}\left(2^{\text {N }}\right.$)

[^0]: R. Rao, CSE 373 Lecture

