CSE 373 Lecture 2: Mathematical Background

+ Today, we will review:
% Logs and exponents
@ Series
% Recursion
% Big-Oh notation for analysis of algorithms

+ Covered in Chapters 1 and 2 of the text

R. Reo, CSE 373 Lecture 1

Logs and exponents

+ We will be dealing mostly with binary numbers (base 2)
+ Definition: logy B = A means XA =B

+ Any baseis equivalent to base 2 within a constant factor:
B= log, B

|
09y log, X

+ Why?

R. Reo, CSE 373 Lecture 1

Logs and exponents

+ We will be dealing mostly with binary numbers (base 2)
+ Definition: logy B = A means XA =B

+ Any baseis equivalent to base 2 within a constant factor:

log, B

| B=—2—

09 log, X

+ Why?

+ Because: if R=1log, B, S=1og, X, and T =logy B,
& 2R=B,25=X,and XT=B
o 2R=XT =25 j.e. R = ST and therefore, T = R/S.

R. Reo, CSE 373 Lecture 1

Properties of logs (of the mathematical kind)

+ We will assumelogs to base 2 unless specified otherwise
+ logAB=Ilog A +logB (note: log AB = log A+log B)

+ logA/B=logA—logB (note:log A/B #log A /log B)
+ logAB=BlogA (note:logAB=(logA)B=1logB A)
+ loglogX <log X <X foral X >0

% loglog X =Y means 22 =X
@ log X grows slower than X; called a*“sub-linear” function

log1=0,log2=1,log1024 =10

+

R. Reo, CSE 373 Lecture 1

Arithmetic Series

*+ S(N)=1+2+...+N :ii =?
+ Thesumis S(1) =1, S(2)213, S(3) =6, S(4) =10, ...

+ IsS(N) =N(N+1)/2?
« Prove by induction (base case: N = 1, S(N) = 1(2)/2 = 1)
@ Assumetrue for N = k: S(k) = k(k+1)/2
% Suppose N = k+1.
© Sk+1) =1+2+ ...+ k+ (k+1) = S(k) + (k+1)
= k(k+1)/2 + (k+1) = (k+1)(k/2 + 1) = (k+1)(k+2)/2. v

+ w Why is this formula useful ?

N
=1

R. Reo, CSE 373 Lecture 1

A Sneak Preview of Algorithm Analysis

+ Consider the following program segment:
for(i=1;i<=N;i++)
for j=1;j<=1i; j++)
printf("Hello\n");
+ How many timesis “printf” executed?
< Or, How many Hello'swill you see?

R. Reo, CSE 373 Lecture 1

A Sneak Preview of Algorithm Analysis

+ The program segment being anal yzed:
for (i=1;i<=N;i++)
for(G=1;j<=1i;j++)
printf("Hello\n");
+ Inner loop executes “printf” i timesin theith iteration
+ ThereareN iterations in the outer loop (i goes from 1 to N)

+ Tota number of times “printf” is executed =
& _N(N+D)

i
2=
+ Congratulations - Y ou’ ve just analyzed your first program!

= Running time of the program is proportional to N(N+1)/2 for all N.

R. Reo, CSE 373 Lecture 1

Other Important Series (know them well!)

. N 3
+ Sum of squares: iz=wz%forlageN
=1

g

K+l

N
« N
+ Sum of exponents: Z'k:|k+llf0r|ar96Na'“dk¢—l
i=1

N
1
+ Harmonic series (k= -1): Zi*z")geNfo”arg‘EN
i=l
© log, N (or InN) isthe natural log of N

N AV _q
+ Geometric series; Y A'= Al
i=0 -

R. Reo, CSE 373 Lecture 1

Recursion

+ A function that callsitself is said to be recursive

% We encountered arecursive procedure “sum” in the first lecture

+ Recursion may be a natural way to program certain
functions that involve repetitive calculations (as
compared to iteration by “for” or “while” loops)

+ Classic example: Fibonacci numbers F,

1,1,23,5,8,13,21,34,.. DO0o

< First two are defined to be 1
<> Rest are sum of preceding two
4 Fn = Fn-l + Fn-Z (n > l)

Leonardo Pisano
R. Rao, CSE 373 Lecture 1 Fibonacci (1170-1250)

9

Recursive Procedure for Fibonacci Numbers

+ int fib(int i) {
if (i < 0) return 0; //invalid input
if i==01]|i==1)return1; //base cases
else return fib(i-1)+fib(i-2);
¥

+ Easy to write: looks like the definition of F,

+ But, can you spot abig problem?

R. Reo, CSE 373 Lecture 1 10

Recursive Cadlls of Fibonacci Procedure

S -y

R AN)
N-3 r@\v (J\ \
o WY &

+ Wastes precious time by re-computing fib(N-i) multiple
times, for i =2, 3, 4, etc.!

R. Reo, CSE 373 Lecture 1

1

Iterative Procedure for Fibonacci Numbers

+ int fib_iter(int i) {
int fibd =1, fibl = 1, fibj = 1;
if (i < 0) return 0; //invalid input
for (intj = 2; j <=1i; j++) { //calculate all fib nos. up to i
fibj = fib0 + fibl;

fib0 = fib1;
fibl = fibj;
return fibj;

}

+ More variables and more bookkeeping but avoids
repetitive calculations and saves time.
< How much time is saved over the recursive procedure?
< Answer in next class...

R. Reo, CSE 373 Lecture 1 12

Recursion Summary

+ Recursion may simplify programming, but beware of
generating large numbers of calls
% Function calls can be expensive in terms of time and space
% Thereis ahidden space cost associated with the system’s stack

+ Besure to get the base case(s) correct!
+ Each step must get you closer to the base case

+ You may use induction to prove your program is correct
@ See examplein previous lecture

R. Reo, CSE 373 Lecture 1 13

Motivation for Big-Oh Notation

+ Suppose you are given two algorithms A and B for
solving a problem

+ Hereistherunningtime T,(N) and Tz(N) of A and B asa
function of input size N:

- Ta
Which agorithm =
T =
=]
would you choose? X =
o Ts
R. Rao, CSE 373 Lecture 1 Input Size N 14

Motivation for Big-Oh Notation (cont.)

+ Forlarge N, the running time of A and B is:

o

a0
. a0 Now which
E ™ Ta(N) =50N algorithm would
C 2500
p=}
[you choose?

1500

109 Te(N) =N?

s

I - R TR Y
Input Size N

R. Rao, CSE 373 Lecture 1 15

Motivation for Big-Oh: Asymptotic Behavior

+ Ingeneral, what realy mattersis the “ asymptotic”
performance as N — o, regardiess of what happens for
small input sizes N.

+ Performance for small input sizes may matter in practice,
if you are sure that small N will be common
< Thisisusualy not the case for most applications

+ Given functions T,(N) and T,(N) that define the running
times of two algorithms, we need a way to decide which
oneis better (i.e. asymptotically smaller)

< Big-Oh notation

R. Reo, CSE 373 Lecture 1 16

Big-Oh Notation

+ T(N) = O(f(N)) if there are positive constants c and n,
such that T(N) < cf(N) for N > n,.

+ We say that T(N) is“big-oh” of f(N) (or, order of f(N))

+ Example 1: Suppose T(N) = 50N. Then, T(N) = O(N)
© Takec=50andn,=1

+ Example 2: Suppose T(N) = 50N+11. Then, T(N) = O(N)
% T(N) <50N+11N = 61N for N > 1. So, ¢ = 61 and n, = 1 works

+ Example3: T5(N) = 50N, T(N) = N2,
Show that T,(N) = O(Tg(N)): what works for ¢ and ny?

R. Rao, CSE 373 Lecture 1 17

Big-Oh Notation

+ T(N) = O(f(N)) if there are positive constants ¢ and n,
such that T(N) < cf(N) for N > n,.

+ We say that T(N) is“big-oh” of f(N) or order of f(N)

+ Example 1: Suppose T(N) = 50N. Then, T(N) = O(N)
© Takec=50andn =1

+ Example 2: Suppose T(N) = 50N+11. Then, T(N) = O(N)
% T(N) < 50N+11N = 61N for N > 1. So, ¢ = 61 and n, = 1 works

+ Example3: To(N) = 50N, Tg(N) = N2
Ta(N) = O(Tg(N)): choose ¢ = 1 and ny = 50

R. Reo, CSE 373 Lecture 1 18

Common functions we will encounter...

Name Big-Oh
Constant 0o(1)
Log log O(log log N)

% Logarithmic | O(log N)

= Log squared | O((log N)?)

g Linear O(N)

5 N log N O(N log N) o

< Quadratic oy Polynomial time
Cubic O(N?)
Exponential | O(2V)

R. Rao, CSE 373 Lecture 1 19

Next Lecture: Using Big-Oh for Algorithm Analysis

Todo:
Finish reading Chapters 1 and 2
Set up your account at MSCC |lab

R. Rao, CSE 373 Lecture 1 20

