B-Trees are multi-way search trees commonly used in database systems or other applications where data is stored externally on disks and keeping the tree shallow is important.

A B-Tree of order M has the following properties:
1. The root is either a leaf or has between 2 and M children.
2. All nonleaf nodes (except the root) have between \(\lceil M/2 \rceil \) and M children.
3. All leaves are at the same depth.

All data records are stored at the leaves. Leaves store between \(\lceil M/2 \rceil \) and M data records.

B-Trees

Each internal node of a B-tree has:
- Between \(\lceil M/2 \rceil \) and M children.
- up to M-1 keys \(k_1 < k_2 < \ldots < k_{M-1} \)

Keys are ordered so that:
\(k_1 < k_2 < \ldots < k_{M-1} \)

Properties of B-Trees

Children of each internal node are “between” the items in that node. Suppose subtree \(T_i \) is the \(i \)th child of the node:
- all keys in \(T_i \) must be between keys \(k_{i-1} \) and \(k_i \)
- \(k_{i-1} \) is the smallest key in \(T_i \)
- All keys in first subtree \(T_1 \leq k_i \)
- All keys in last subtree \(T_M \geq k_{M-1} \)
Example: Searching in B-trees

- B-tree of order 3: also known as 2-3 tree (2 to 3 children)

![Tree Diagram with Examples: Search for 9, 14, 12]

- Note: If leaf nodes are connected as a Linked List, B-tree is called a B+ tree – Allows sorted list to be accessed easily

Inserting and Deleting Items in B-Trees

- Insert X: Do a Find on X and find appropriate leaf node
 - If leaf node is not full, fill in empty slot with X
 - E.g. Insert 5
 - If leaf node is full, split leaf node and adjust parents up to root node
 - E.g. Insert 9

- Delete X: Do a Find on X and delete value from leaf node
 - May have to combine leaf nodes and adjust parents up to root node
 - E.g. Delete 17 (after Insert 9)

Run Time Analysis of B-Tree Operations

- For a B-Tree of order M
 - Each internal node has up to M-1 keys to search
 - Each internal node has between $\lceil M/2 \rceil$ and M children
 - Depth of B-Tree storing N items is $O(\log_{\lceil M/2 \rceil} N)$

- Find: Run time is:
 - $O(\log M)$ to binary search which branch to take at each node
 - Total time to find an item is $O(\text{depth} \cdot \log M) = O(\log N)$

- Insert and Delete: Run time is:
 - $O(M)$ to handle splitting or combining keys in nodes
 - Total time is $O(\text{depth} \cdot M) = O(\log N \cdot \log \lceil M/2 \rceil) \cdot M)

- Tree in internal memory $\Rightarrow M = 3$ or 4
- Tree on Disk $\Rightarrow M = 32$ to 256. Interior and leaf nodes fit on 1 disk block.
 - Depth = 2 or 3 \Rightarrow allows very fast access to data in database systems.
Summary of Search Trees

- Problem with Search Trees: Must keep tree balanced to allow fast access to stored items
- AVL trees: Insert/Delete operations keep tree balanced
- Splay trees: Repeated Find operations produce balanced trees
- Multi-way search trees (e.g. B-Trees): More than two children per node allows shallow trees; all leaves are at the same depth keeping tree balanced at all times

A New Problem...

- Instead of finding any item (as in a search tree), suppose we want to find only the smallest (highest priority) item quickly. Examples:
 - Operating system needs to schedule jobs according to priority
 - Doctors in ER take patients according to severity of injuries
 - Event simulation (bank customers arriving and departing, ordered according to when the event happened)
- We want an ADT that can efficiently perform:
 - FindMin (or DeleteMin)
 - Insert
- What if we use…
 - Lists: If sorted, what is the run time for Insert/DeleteMin? Unsorted?
 - Binary Search Trees: What is the run time for Insert/DeleteMin?

Using the Data Structures we know…

- Suppose we have N items.
- Lists
 - If sorted: DeleteMin is $O(1)$ but Insert is $O(N)$
 - If not sorted: Insert is $O(1)$ but DeleteMin is $O(N)$
- Binary Search Trees (BSTs)
 - Insert is $O(\log N)$ and DeleteMin is $O(\log N)$
- BSTs look good but…
 - BSTs are designed to be efficient for Find, not just FindMin
 - We only need FindMin/DeleteMin
- We can do better than BSTs!
 - $O(1)$ FindMin and $O(\log N)$ Insert
 - How?

Heaps

- A binary heap is a binary tree that is:
 1. Complete: the tree is completely filled except possibly the bottom level, which is filled from left to right
 2. Satisfies the heap order property: every node is smaller than (or equal to) its children
- Therefore, the root node is always the smallest in a heap

Which of these is not a heap?
Next Class:
More Heaps

To Do:
Read Chapter 6
Homework #2 due on Monday
Have a great weekend!