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CSE 373 Lecture 8: Trees, Trees, and More Trees

✦ Today’s Topics:
➭ AVL Trees
➭ Splay Trees
➭ B-Trees

✦ Covered in Chapter 4 of the text
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Recall from Last Time: AVL Trees

✦ AVL trees are height-balanced binary
search trees - for every node, heights of
left and right subtree differ by no more
than 1

✦ Balance factor of a node = height(left
subtree) - height(right subtree)

✦ An AVL tree has balance factor of 1, 0, or
–1 at every node

✦ Can prove: Height of an AVL tree of N
nodes is always O(log N) (see text)
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Let the node that needs rebalancing be α.

There are 4 cases:
Outside Cases (require single rotation) :

1. Insertion into left subtree of left child of α.
2. Insertion into right subtree of right child of α.

Inside Cases (require double rotation) :
3. Insertion into right subtree of left child of α.
4. Insertion into left subtree of right child of α.

The rebalancing is performed through four separate rotation
algorithms.

Insertions in AVL Trees
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Insertions in AVL Trees: Outside Case
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Insertions in AVL Trees: Outside Case
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Insertions in AVL Trees: Outside Case
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Insertions in AVL Trees: Outside Case
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“Right rotation” done!
(“Left rotation” is mirror

symmetric)

Insertions in AVL Trees: Outside Case

AVL property has been restored!



9R. Rao, CSE 373 Lecture 1

j

k

X Y

Z

Insertions in AVL Trees: Inside Case

Consider a valid
AVL subtree
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Inserting into Y
destroys the
AVL property
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Insertions in AVL Trees: Inside Case

Does “right rotation”
restore balance?
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Insertions in AVL Trees: Inside Case
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Consider the structure
of subtree Y… j
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Insertions in AVL Trees: Inside Case
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Insertions in AVL Trees: Inside Case
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Insertions in AVL Trees: Inside Case

We will do a left-right
“double rotation” . . .
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Steps for Left-Right
Double Rotation

Insertions in AVL Trees: Inside Case

1. Adjust child
pointers…
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2. Make i the root

jk

X V ZW

i
Balance has been
restored!

(Right-left case is
mirror-symmetric)

Insertions in AVL Trees: Inside Case

Steps for Left-Right
Double Rotation
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AVL Tree Example

✦ Exercise: Insert 8, 1, 0 into following AVL tree:

✦ Exercise: Next, insert 2
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Arguments for AVL trees:

1. Search is O(log N) since AVL trees are always balanced.
2. The height balancing adds no more than a constant factor to

the speed of insertion.

Arguments against using AVL trees:

1. Difficult to program & debug; more space for height info.
2. Asymptotically faster but can be slow in practice.
3. Most large searches are done in database systems on disk and

use other structures (e.g. B-trees).
4. May be OK to have O(N) for a single operation if total run

time for many consecutive operations is fast (e.g. Splay trees).

Pros and Cons of AVL Trees
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Splay trees are tree structures that:

1. Are not perfectly balanced all the time
2. Allow actual Find operations to balance the tree

so that future operations may run faster

Based on the heuristic:
If X is accessed once, it is likely to be accessed again.

- After node X is accessed, perform “splaying”
operations to bring it up to the root of the tree.

- Do this in a way that leaves the tree more
balanced as a whole.

Splay Trees
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• Let X be a non-root node with ≥ 2 ancestors.

• Let P be its parent node.

• Let G be its grandparent node.
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Splay Tree Terminology
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1. Nodes must contain a parent pointer.

element left right parent

2. When X is accessed, apply one of six rotation routines.
• Single Rotations (X has a P but no G)

• Double Rotations (X has both a P and a G)

• zig_left, zig_right

• zig_zig_left, zig_zig_right
• zig_zag_left, zig_zag_right

Splay Tree Operations

22R. Rao, CSE 373 Lecture 1

Splay Trees: Zig operation

✦ “Zig” is just a single rotation, as in an AVL tree

✦ Suppose R was the node that was accessed (e.g. using Find)

✦ Zig-right moves R to the top ! can access R faster next time

Zig-right
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Splay Trees: Zig operation

✦ Suppose Q is now accessed (e.g. using Find)

✦ Zig-left moves Q to the top

Zig-left
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Splay Trees: Zig-Zig operation

✦ “Zig-Zig” consists of two single rotations of the same type
(assume R is the node that was accessed):

✦ Again, due to “zig-zig” splaying, R has bubbled to the top!

(Zig-right) (Zig-right)
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Splay Trees: Zig-Zag operation

✦ “Zig-Zag” consists of two rotations of the opposite type
(assume R is the node that was accessed):

✦ “Zig-Zag” splaying also causes R to move to the top.

(Zig-left) (Zig-right)
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Splay Trees: Example

✦ Exercise:

✦ Insert the keys 1, 2, …, 7 into an empty splay tree in
decreasing order.

✦ What happens when you keep accessing “1”?
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Splay Trees: Example 2
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Examples suggest that splaying causes tree to get balanced.
The actual analysis is rather advanced and is in Chapter 11.

Result of Analysis: Any sequence of M operations on a splay
tree of size N takes O(M log N) time.

So, the amortized running time for one operation is O(log N).

This guarantees that even if the depths of some nodes
get very large, you cannot get a long sequence of
O(N) searches because each search operation causes
a rebalance.

Analysis of Splay Trees
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✦ E.g. B-tree of order 3: Tree has 2 or 3 children per node

✦ Example: Search for 8

Beyond Binary Search Trees: Multi-Way Trees

13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-
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Next Class:

More on B-Trees

Heaps (Priority Queues)

To Do:

Finish Chapter 4 and Start Chapter 6

Homework # 2


