
1R. Rao, CSE 373 Lecture 1

CSE 373 Lecture 7: More on Search Trees

✦ Today’s Topics:
➭ Array Implementation of Trees
➭ Lazy Deletion
➭ Run Time Analysis of Binary Search Tree Operations
➭ AVL Trees
➭ Splay Trees

✦ Covered in Chapter 4 of the text

2R. Rao, CSE 373 Lecture 1

Array Implementation of Trees

✦ Used mostly for complete binary trees
➭ A complete tree has no gaps when you scan

the nodes left-to-right, top-to-bottom

✦ Idea: Use left-to-right scan to impose a
linear order on the tree nodes

✦ Implementation:
➭ Children of A[i] = A[2i+1], A[2i+2]
➭ Use a default value to indicate empty node
➭ Exercise: Draw array for the tree shown

✦ Why is this implementation inefficient
for non-complete trees?

10

5 24

94

97

3R. Rao, CSE 373 Lecture 1

Pointer Implementation: Delete Operation

✦ Problem: When you delete a node,
what do you replace it by?

✦ Solution:
1. If it has no children, by NULL
2. If it has 1 child, by that child
3. If it has 2 children, by the node with

the smallest value in its right subtree,
(or largest value in left subtree)

Recursively delete node being used in 2 and 3

✦ Worst case: Recursion propagates all
the way to a leaf node – time is
O(depth of tree)

10

5 24

94

97

11

17 4R. Rao, CSE 373 Lecture 1

Lazy Deletion

✦ A “lazy” operation is one that puts off work as much as
possible in the hope that a future operation will make the
current operation unnecessary

✦ Idea: Mark node as deleted; no need to reorganize tree
➭ Skip marked nodes during Find or Insert
➭ Reorganize tree only when number of marked nodes exceeds a

percentage of real nodes (e.g. 50%)
➭ Constant time penalty due to marked nodes – depth increases only by

a constant amount if 50% are marked undeleted nodes

✦ Modify Insert to make use of marked nodes whenever
possible e.g. when deleted value is re-inserted

✦ Can also use lazy deletion for Lists



5R. Rao, CSE 373 Lecture 1

Run Time Analysis of Binary Search Trees

✦ All BST operations (except MakeEmpty) are O(d), where d
is tree depth
➭ MakeEmpty takes O(N) for a tree with N nodes – frees all nodes

✦ From last time, we know: log N ≤ d ≤ N-1 for a binary tree
with N nodes
➭ What is the best case tree? What is the worst case tree?

✦ So, best case running time of BST operations is O(log N)
➭ In fact, average case is also O(log N) – see text

✦ Worst case running time is O(N)
➭ E.g. What happens when you Insert elements in ascending order?

➧ Insert: 2, 4, 6, 8, 10, 12 into an empty BST
➭ Problem: Lack of “balance”: compare depths of left and right subtree

6R. Rao, CSE 373 Lecture 1

Balancing Trees

✦ Many algorithms exist for keeping trees
balanced
➭ Adelson-Velskii and Landis (AVL) trees (1962)
➭ Splay trees and other self-adjusting trees (1978)
➭ B-trees and other multiway search trees (1972)

✦ First try at balancing trees: Perfect balance
➭ Want a complete tree after every operation
➭ Too expensive E.g. Insert 2
➭ Need a looser constraint…

6

4 9

1 5 8

5

2 8

1 4 6 9

Insert 2 &
complete

7R. Rao, CSE 373 Lecture 1

AVL Trees

✦ AVL trees are height-balanced binary
search trees

✦ Balance factor of a node = height(left
subtree) - height(right subtree)

✦ An AVL tree has balance factor of 1, 0, or
–1 at every node
➭ For every node, heights of left and right

subtree differ by no more than 1
➭ Store current heights in each node

✦ Can prove: Height is O(log N)
All operations (e.g. Find) are O(log N)
except Insert (assume lazy deletion)

6

4 9

1 5 8

2

11

2

1

6

4 9

1

1

1

2

5

1

6

4

1

8

7

3

21

2

1

9

8R. Rao, CSE 373 Lecture 1

Insert and Rotation in AVL Trees

✦ Insert operation may cause balance factor to become 2 or –2
for some node on the path from insertion point to root node
➭ After Insert, back up to root updating heights
➭ If difference = 2 or –2, adjust tree by rotation around deepest such

node
➭ Example:

6

4

1

1

26

4

1
4

1

1

6
RotateInsert 1

1



9R. Rao, CSE 373 Lecture 1

BF = 1

BF = 0

BF = 0 BF = 0

BF = 1

BF = 0

BF = 0BF = 0

BF = 0

Tree before insertion (BF = Balance Factor)

Insertion: Another Example

10R. Rao, CSE 373 Lecture 1

BF = ?

BF = ?

BF = 0
BF = ?

BF = 0

Tree after insertion
BF = 0

Insertion: Example 1 (Outside case)

BF = ?

11R. Rao, CSE 373 Lecture 1

BF =

BF =

BF = BF =

BF =

BF =

BF =BF =

BF =

Tree after insertion
BF = 0

Insertion: Example 2 (Inside case)

12R. Rao, CSE 373 Lecture 1

Let the node that needs rebalancing be α.

There are 4 cases:
Outside Cases (require single rotation) :

1. Insertion into left subtree of left child of α.
2. Insertion into right subtree of right child of α.

Inside Cases (require double rotation) :
3. Insertion into right subtree of left child of α.
4. Insertion into left subtree of right child of α.

The rebalancing is performed through four separate rotation
algorithms – on board examples. See text for details.

Insertions in AVL Trees


