CSE 373 Lecture 7: More on Search Trees

- Today’s Topics:
 - Array Implementation of Trees
 - Lazy Deletion
 - Run Time Analysis of Binary Search Tree Operations
 - AVL Trees
 - Splay Trees
- Covered in Chapter 4 of the text

Array Implementation of Trees

- Used mostly for complete binary trees
 - A complete tree has no gaps when you scan the nodes left-to-right, top-to-bottom
- Idea: Use left-to-right scan to impose a linear order on the tree nodes
- Implementation:
 - Use a default value to indicate empty node

Pointer Implementation: Delete Operation

- Problem: When you delete a node, what do you replace it by?
- Solution:
 1. If it has no children, by NULL
 2. If it has 1 child, by that child
 3. If it has 2 children, by the node with the smallest value in its right subtree, (or largest value in left subtree)
 Recursively delete node being used in 2 and 3
- Worst case: Recursion propagates all the way to a leaf node – time is $O(\text{depth of tree})$

Lazy Deletion

- A “lazy” operation is one that puts off work as much as possible in the hope that a future operation will make the current operation unnecessary
- Idea: Mark node as deleted; no need to reorganize tree
 - Skip marked nodes during Find or Insert
 - Reorganize tree only when number of marked nodes exceeds a percentage of real nodes (e.g. 50%)
 - Constant time penalty due to marked nodes – depth increases only by a constant amount if 50% are marked undeleted nodes
- Modify Insert to make use of marked nodes whenever possible e.g. when deleted value is re-inserted
- Can also use lazy deletion for Lists
Run Time Analysis of Binary Search Trees

✦ All BST operations (except MakeEmpty) are $O(d)$, where d is tree depth
 ➤ MakeEmpty takes $O(N)$ for a tree with N nodes – frees all nodes
✦ From last time, we know: $\log N \leq d \leq N-1$ for a binary tree with N nodes
 ➤ What is the best case tree? What is the worst case tree?
✦ So, best case running time of BST operations is $O(\log N)$
 ➤ In fact, average case is also $O(\log N)$ – see text
✦ Worst case running time is $O(N)$
 ➤ E.g. What happens when you insert elements in ascending order?
 ➤ Problem: Lack of "balance": compare depths of left and right subtree

Balancing Trees

✦ Many algorithms exist for keeping trees balanced
 ➤ Adelson-Velskii and Landis (AVL) trees (1962)
 ➤ Splay trees and other self-adjusting trees (1978)
 ➤ B-trees and other multiway search trees (1972)
✦ First try at balancing trees: Perfect balance
 ➤ Want a complete tree after every operation
 ➤ Too expensive E.g. Insert 2
 ➤ Need a looser constraint…

AVL Trees

✦ AVL trees are height-balanced binary search trees
✦ Balance factor of a node = height(left subtree) - height(right subtree)
✦ An AVL tree has balance factor of 1, 0, or -1 at every node
 ➤ For every node, heights of left and right subtree differ by no more than 1
 ➤ Store current heights in each node
✦ Can prove: Height is $O(\log N)$
 ➤ All operations (e.g. Find) are $O(\log N)$ except Insert (assume lazy deletion)

Insert and Rotation in AVL Trees

✦ Insert operation may cause balance factor to become 2 or -2 for some node on the path from insertion point to root node
 ➤ After Insert, back up to root updating heights
 ➤ If difference = 2 or -2, adjust tree by rotation around deepest such node
 ➤ Example:

1. Insert 1
2. Rotate
Insertion: Another Example

Tree before insertion (BF = Balance Factor)

Insertion: Example 1 (Outside case)

Tree after insertion

Insertion: Example 2 (Inside case)

Tree after insertion

Insertions in AVL Trees

Let the node that needs rebalancing be \(\alpha \).

There are 4 cases:

Outside Cases (require single rotation):
1. Insertion into left subtree of left child of \(\alpha \).
2. Insertion into right subtree of right child of \(\alpha \).

Inside Cases (require double rotation):
3. Insertion into right subtree of left child of \(\alpha \).
4. Insertion into left subtree of right child of \(\alpha \).

The rebalancing is performed through four separate rotation algorithms – on board examples. See text for details.