
1R. Rao, CSE 373 Lecture 1

CSE 373 Lecture 6: Trees

✦ Today’s agenda:
➭ Trees: Definition and terminology
➭ Traversing trees
➭ Binary search trees
➭ Inserting into and deleting from trees

✦ Covered in Chapter 4 of the text

2R. Rao, CSE 373 Lecture 1

Why Do We Need Trees?

✦ Lists, Stacks, and Queues represent linear sequences

✦ Data often contain hierarchical relationships that
cannot be expressed as a linear ordering
➭ File directories or folders on your computer
➭Moves in a game
➭ Employee hierarchies in organizations and companies
➭ Family trees
➭ Classification hierarchies (e.g. phylum, family, genus,

species)

3R. Rao, CSE 373 Lecture 1

Tree Jargon

✦ Basic terminology:

• nodes and edges
• root
• subtrees
• parent
• children, siblings
• leaves
• path
• ancestors
• descendants
• path length

A

B C D

E F

Note: Arrows denote directed edges
Trees always contain directed edges
but arrows are often omitted.

4R. Rao, CSE 373 Lecture 1

More Tree Jargon

✦ Length of a path =
number of edges

✦ Depth of a node N =
length of path from
root to N

✦ Height of node N =
length of longest path
from N to a leaf

✦ Depth and height of
tree = ?

A

B C D

E F

depth=0, height = 2

depth = 2, height=0

5R. Rao, CSE 373 Lecture 1

Definition and Tree Trivia

✦ Recursive Definition of a Tree:
A tree is a set of nodes that is

a. an empty set of nodes, or
b. has one node called the root from which zero or more trees
(subtrees) descend.

✦ A tree with N nodes always has ___ edges

✦ Two nodes in a tree have at most how many paths between
them?

✦ Can a non-zero path from node N reach node N again?

✦ Does depth of nodes in a non-zero path increase or decrease?

6R. Rao, CSE 373 Lecture 1

Definition and Tree Trivia

✦ Recursive Definition of a Tree:
A tree is a set of nodes that is

a. an empty set of nodes, or
b. has one node called the root from which zero or more trees
(subtrees) descend.

✦ A tree with N nodes always has N-1 edges

✦ Two nodes in a tree have at most one path between them

✦ Can a non-zero path from node N reach node N again?
➭ No! Trees can never have cycles.

✦ Does depth of nodes in a non-zero path increase or decrease?
➭ Depth always increases in a non-zero path

7R. Rao, CSE 373 Lecture 1

Implementation of Trees

✦ Obvious Pointer-Based Implementation: Node with value
and pointers to children
➭ Problem: Do not usually know number of children for a node in

advance. How many pointers should we allocate space for?

✦ Better Implementation: 1st Child/Next Sibling Representation
➭ Each node has 2 pointers: one to its first child and one to next sibling
➭ Can handle arbitrary number of children
➭ Exercise: Draw the representation

for this tree…

A

B C D

E F
8R. Rao, CSE 373 Lecture 1

Example Arithmetic Expression:

A + (B * (C / D))

How would you express this as a tree?

Application: Arithmetic Expression Trees

9R. Rao, CSE 373 Lecture 1

Example Arithmetic Expression:

A + (B * (C / D))

Tree for the above expression:

Application: Arithmetic Expression Trees

+

A *

B /

C D

• Used in most compilers
• No parenthesis need – use tree structure
• Can speed up calculations e.g. replace

/ node with C/D if C and D are known
• Calculate by traversing tree (how?)

10R. Rao, CSE 373 Lecture 1

Traversing Trees

✦ Preorder: Root, then Children
➭ + A * B / C D

✦ Postorder: Children, then Root
➭ A B C D / * +

✦ Inorder: Left child, Root, Right child
➭ A + B * C / D

+

A *

B /

C D

11R. Rao, CSE 373 Lecture 1

void print_preorder (TreeNode T)
{ TreeNode P;
if (T == NULL) return;
else { print_element(T-> Element);

P = T -> FirstChild;
while (P != NULL) {
print_preorder (P);
P = P -> NextSibling; }

}
}

Example Code for Recursive Preorder

What is the running time for a tree with N nodes?

12R. Rao, CSE 373 Lecture 1

void Stack_Preorder (TreeNode T, Stack S)
{
if (T == NULL) return; else push(T,S);
while (!isempty(S)) {

T = pop(S);
print_element(T -> Element);
if (T -> Right != NULL) push(T -> Right, S);
if (T -> Left != NULL) push(T -> Left, S);
}

}

Preorder Traversal with a Stack

What is the running time for a tree with N nodes?

13R. Rao, CSE 373 Lecture 1

Binary Trees

✦ Every node has at most two children
➭ Most popular tree in computer science

✦ Given N nodes, what is the minimum depth of a binary tree?

✦ What is the maximum depth of a binary tree?

14R. Rao, CSE 373 Lecture 1

Binary Trees

✦ Every node has at most two children
➭ Most popular tree in computer science

✦ Given N nodes, what is the minimum depth of a binary tree?
➭ At depth d, you can have N = 2d to 2d+1-1 nodes (a full tree)
➭ So, minimum depth d is: log N ≤ d ≤ log(N+1)-1 or Θ(log N)

✦ What is the maximum depth of a binary tree?
➭ Degenerate case: Tree is a linked list!
➭ Maximum depth = N-1

✦ Goal: Would like to keep depth at around log N to get better
performance than linked list for operations like Find.

15R. Rao, CSE 373 Lecture 1

Binary Search Trees

✦ Binary search trees are binary trees in which the value in
every node is:
> all values in the node’s left subtree
< all values in the node’s right subtree

✦ Application: “Look-up” table
➭ Example: Given SSN, return student record
➭ SSN stored in each node as the key value

✦ Operations:
➭ Find, FindMin, FindMax
➭ Insert, Delete

9

5

10

96 99

94

97

16R. Rao, CSE 373 Lecture 1

Operations on Binary Search Trees

✦ How would you implement these?
➭ Recursive definition of binary search

trees allows recursive routines!

✦ Position FindMin(Tree T)

✦ Position FindMax(Tree T)

✦ Position Find(ElementType X, Tree T)

✦ Tree Insert(ElementType X, Tree T)

✦ Tree Delete(ElementType X, Tree T)

9

5

10

96 99

94

97

17R. Rao, CSE 373 Lecture 1

Insert Operation

✦ Tree Insert(ElementType X, Tree T)
➭ Do a “Find” operation for X
➭ If X is found ! update duplicates counter
➭ Else, “Find” stops at a NULL pointer
➭ Insert Node with X there!

✦ Example: Insert 95

10

96 99

94

97
?

18R. Rao, CSE 373 Lecture 1

Insert Operation

✦ Tree Insert(ElementType X, Tree T)
➭ Do a “Find” operation for X
➭ If X is found ! update duplicates counter
➭ Else, Find stops at a NULL pointer
➭ Insert Node with X there!

✦ Example: Insert 95

10

96 99

94

97

10

96 99

94

97

95

19R. Rao, CSE 373 Lecture 1

Delete Operation

✦ Delete is a bit trickier…Why?

✦ Suppose you want to delete 10

✦ Strategy:
➭ Find 10
➭ Delete the node containing 10

✦ Problem: When you delete a node,
what do you replace it by?

10

5 24

94

97

11

17 20R. Rao, CSE 373 Lecture 1

Delete Operation

✦ Problem: When you delete a node,
what do you replace it by?

✦ Solution:
1. If it has no children, by NULL
2. If it has 1 child, by that child
3. If it has 2 children, by the node with

the smallest value in its right subtree

✦ Examples:
1. Delete 5
2. Delete 24 (note: recursive deletion)
3. Delete 10 (note: recursive deletion)

10

5 24

94

97

11

17

21R. Rao, CSE 373 Lecture 1

Example: Delete “10”

10

5 24

94

97

11

17

11

5 24

94

97

11

17

Find 10,
Replace with
smallest
value in
right subtree

Delete
smallest
value in
right subtree

22R. Rao, CSE 373 Lecture 1

Example: Delete “10”

11

5 24

94

97

11

17

Delete “11” in
right subtree
(recursive delete)

Find “11”
1 child, so
replace by child

11

5 24

94

97

17

17

Delete “17”
No child, so
replace by NULLNULL

23R. Rao, CSE 373 Lecture 1

Next Class:

Analysis of Binary Search Tree Operations

Other Species of Trees: AVL, splay, and B-trees

Homework #2 will be assigned

To Do:

Read Chapter 4

