CSE 373 Lecture 6: Trees

\rightarrow Today's agenda:
\Rightarrow Trees: Definition and terminology
\Rightarrow Traversing trees
\Rightarrow Binary search trees
\Rightarrow Inserting into and deleting from trees
\leftrightarrow Covered in Chapter 4 of the text

More Tree Jargon

- Length of a path = number of edges
- Depth of a node $\mathrm{N}=$ length of path from root to N
- Height of node $\mathrm{N}=$ length of longest path from N to a leaf

\leftrightarrow Depth and height of tree $=$?

Definition and Tree Trivia

\rightarrow Recursive Definition of a Tree:
A tree is a set of nodes that is
a. an empty set of nodes, or
b. has one node called the root from which zero or more trees (subtrees) descend.

- A tree with N nodes always has \qquad edges
- Two nodes in a tree have at most how many paths between them?
- Can a non-zero path from node N reach node N again?
- Does depth of nodes in a non-zero path increase or decrease?

Definition and Tree Trivia

- Recursive Definition of a Tree:

A tree is a set of nodes that is
a. an empty set of nodes, or
b. has one node called the root from which zero or more trees (subtrees) descend.

- A tree with N nodes always has N-1 edges
- Two nodes in a tree have at most one path between them
- Can a non-zero path from node N reach node N again? \Rightarrow No! Trees can never have cycles
- Does depth of nodes in a non-zero path increase or decrease? \Rightarrow Depth always increases in a non-zero path
R. Rao, CSE 373 Lecture 1

6

Implementation of Trees

- Obvious Pointer-Based Implementation: Node with value and pointers to children
\Leftrightarrow Problem: Do not usually know number of children for a node in advance. How many pointers should we allocate space for?
- Better Implementation: $1^{\text {st }}$ Child/Next Sibling Representation \Rightarrow Each node has 2 pointers: one to its first child and one to next sibling \Rightarrow Can handle arbitrary number of children

Application: Arithmetic Expression Trees

Example Arithmetic Expression:
$\mathrm{A}+(\mathrm{B} *(\mathrm{C} / \mathrm{D}))$
How would you express this as a tree?

Application: Arithmetic Expression Trees

Example Arithmetic Expression:
$\mathrm{A}+(\mathrm{B} *(\mathrm{C} / \mathrm{D}))$
Tree for the above expression:

- Used in most compilers
- No parenthesis need - use tree structure
- Can speed up calculations e.g. replace
/ node with C/D if C and D are known
- Calculate by traversing tree (how?)

Traversing Trees
\rightarrow Preorder: Root, then Children $\Rightarrow+A * B / C D$

- Postorder: Children, then Root \Rightarrow ABCD $/ *+$
- Inorder: Left child, Root, Right child $\Rightarrow \mathrm{A}+\mathrm{B} * \mathrm{C} / \mathrm{D}$

Example Code for Recursive Preorder

```
void print preorder ( TreeNode T)
{ TreeNode P
    if ( T == NULL ) return;
    else { print_element(T-> Element);
            P = T -> FirstChild;
            while (P != NULL) {
                print_preorder ( P );
                P = P-> NextSibling; }
            }
}
```

What is the running time for a tree with N nodes?

Preorder Traversal with a Stack

```
void Stack_Preorder (TreeNode T, Stack S)
{
if (T == NULL) return; else push(T,S)
while (!isempty(S)) {
    T = pop(S);
    print_element(T -> Element);
    if (T -> Right != NULL) push(T -> Right, S);
    if (T -> Left != NULL) push(T -> Left, S);
    }
}
```

What is the running time for a tree with N nodes?

Binary Trees

- Every node has at most two children
\Rightarrow Most popular tree in computer science
- Given N nodes, what is the minimum depth of a binary tree?
- What is the maximum depth of a binary tree?

Operations on Binary Search Trees
\uparrow How would you implement these?
\Rightarrow Recursive definition of binary search trees allows recursive routines!

- Position FindMin(Tree T)
- Position FindMax(Tree T)
- Position Find(ElementType X, Tree T)
- Tree Insert(ElementType X, Tree T)
- Tree Delete(ElementType X, Tree T)

Delete Operation

- Problem: When you delete a node, what do you replace it by?
- Solution:

1. If it has no children, by NULL
2. If it has 1 child, by that child
3. If it has 2 children, by the node with the smallest value in its right subtree

- Examples:

1. Delete 5
2. Delete 24 (note: recursive deletion)
3. Delete 10 (note: recursive deletion)
R. Rao, CSE 373 Lecture 1

