CSE 373 Lecture 6: Trees

✦ Today's agenda:

- Trees: Definition and terminology
- Traversing trees
- Binary search trees
- \Leftrightarrow Inserting into and deleting from trees
- ♦ Covered in Chapter 4 of the text

R. Rao, CSE 373 Lecture 1

Why Do We Need Trees?

- ◆ Lists, Stacks, and Queues represent linear sequences
- ✦ Data often contain hierarchical relationships that
 - cannot be expressed as a linear ordering ⇔ File directories or folders on your computer
 - ◇ Moves in a game
 - ⇒ Employee hierarchies in organizations and companies
 - ⇔ Family trees
 - Classification hierarchies (e.g. phylum, family, genus, species)

2

R. Rao, CSE 373 Lecture 1

1

Definition and Tree Trivia

(subtrees) descend.

Recursive Definition of a Tree:
 A tree is a set of nodes that is

 an empty set of nodes, or
 b. has one node called the root from which zero or more trees

- ♦ A tree with N nodes always has _____ edges
- Two nodes in a tree have at most how many paths between them?
- + Can a non-zero path from node N reach node N again?
- ✤ Does depth of nodes in a non-zero path increase or decrease?

R. Rao, CSE 373 Lecture 1

5

Definition and Tree Trivia

♦ Recursive Definition of a Tree: A tree is a set of nodes that is

a. an empty set of nodes, or

b. has one node called the root from which zero or more trees (subtrees) descend.

- ♦ A tree with N nodes always has N-1 edges
- ✤ Two nodes in a tree have at most one path between them
- Can a non-zero path from node N reach node N again?
 ⇒ No! Trees can never have cycles.
- ◆ Does depth of nodes in a non-zero path increase or decrease?
 ⇒ Depth always increases in a non-zero path

6

8

R. Rao, CSE 373 Lecture 1

 Obvious and poin 	Pointer-Based laters to children	Implement	ation: Nod	e with valu	e
Proble advance	m: Do not usually e. How many poin	know numbe ters should v	r of children ve allocate s	for a node in pace for?	
 Better In ⇒ Each n 	plementation:	l st Child/N one to its fi	ext Sibling st child and	g Represent one to next si	ation bling
 Can ha Exerci for this 	ndle arbitrary num se: Draw the repres tree	ber of childr sentation	en A	<	
		B	ť Č	D	

Application: Arithmetic Expression Trees

Example Arithmetic Expression:

A + (B * (C / D))

How would you express this as a tree?

R. Rao, CSE 373 Lecture 1

void prin { TreeNod	_preorder (TreeNode T)	
if (T	== NULL) re	eturn;		
else {	print_eleme P = T -> F:	ent(T-> Element(T-> Element(T-	ment);	
	while (P !=	= NULL) {		
	print_pred	order (P)	;	
	P = P -> 1	VextSibling	; }	
	}			
}				

Binary Trees

◆ Every node has at most two children ⇒ Most popular tree in computer science

- + Given N nodes, what is the minimum depth of a binary tree?
- + What is the maximum depth of a binary tree?

R. Rao, CSE 373 Lecture 1

13

Binary Trees

- Every node has at most two children
 Most popular tree in computer science
- Given N nodes, what is the minimum depth of a binary tree?
 ⇒ At depth d, you can have N = 2^d to 2^{d+1}-1 nodes (a full tree)
 ⇒ So, minimum depth d is: log N ≤ d ≤ log(N+1)-1 or Θ(log N)
- What is the maximum depth of a binary tree?
 Degenerate case: Tree is a linked list!
 Maximum depth = N-1
- ◆ Goal: Would like to keep depth at around log N to get better performance than linked list for operations like Find.

14

R. Rao, CSE 373 Lecture 1

Next Class: Analysis of Binary Search Tree Operations Other Species of Trees: AVL, splay, and B-trees Homework #2 will be assigned To Do:

Read Chapter 4

R. Rao, CSE 373 Lecture 1

23