CSE 373 Lecture 6: Trees

✦ Today's agenda:
 ➤ Trees: Definition and terminology
 ➤ Traversing trees
 ➤ Binary search trees
 ➤ Inserting into and deleting from trees
✦ Covered in Chapter 4 of the text

Why Do We Need Trees?

✦ Lists, Stacks, and Queues represent linear sequences
✦ Data often contain hierarchical relationships that cannot be expressed as a linear ordering
 ➤ File directories or folders on your computer
 ➤ Moves in a game
 ➤ Employee hierarchies in organizations and companies
 ➤ Family trees
 ➤ Classification hierarchies (e.g. phylum, family, genus, species)

Tree Jargon

✦ Basic terminology:
 • nodes and edges
 • root
 • subtrees
 • parent
 • children, siblings
 • leaves
 • path
 • ancestors
 • descendants
 • path length

Note: Arrows denote directed edges
Trees always contain directed edges but arrows are often omitted.

More Tree Jargon

✦ Length of a path = number of edges
✦ Depth of a node N = length of path from root to N
✦ Height of node N = length of longest path from N to a leaf
✦ Depth and height of tree = ?
Definition and Tree Trivia

- Recursive Definition of a Tree:
 A tree is a set of nodes that is
 a. an empty set of nodes, or
 b. has one node called the root from which zero or more trees
 (subtrees) descend.
- A tree with N nodes always has ___ edges
- Two nodes in a tree have at most how many paths between
 them?
- Can a non-zero path from node N reach node N again?
- Does depth of nodes in a non-zero path increase or decrease?

Definition and Tree Trivia

- Recursive Definition of a Tree:
 A tree is a set of nodes that is
 a. an empty set of nodes, or
 b. has one node called the root from which zero or more trees
 (subtrees) descend.
- A tree with N nodes always has N-1 edges
- Two nodes in a tree have at most one path between them
- Can a non-zero path from node N reach node N again?
 ✗ No! Trees can never have cycles.
- Does depth of nodes in a non-zero path increase or decrease?
 ✗ Depth always increases in a non-zero path

Implementation of Trees

- Obvious Pointer-Based Implementation: Node with value
 and pointers to children
 ➤ Problem: Do not usually know number of children for a node in
 advance. How many pointers should we allocate space for?
- Better Implementation: 1st Child/Next Sibling Representation
 ➤ Each node has 2 pointers: one to its first child and one to next sibling
 ➤ Can handle arbitrary number of children
 ➤ Exercise: Draw the representation
 for this tree…

Application: Arithmetic Expression Trees

Example Arithmetic Expression:
A + (B * (C / D))

How would you express this as a tree?

Example Arithmetic Expression:
A + (B * (C / D))

How would you express this as a tree?
Application: Arithmetic Expression Trees

Example Arithmetic Expression:

\[A + (B * (C / D)) \]

Tree for the above expression:

- Used in most compilers
- No parenthesis need – use tree structure
- Can speed up calculations e.g. replace \(/ \) node with \(C / D \) if \(C \) and \(D \) are known
- Calculate by traversing tree (how?)

Traversing Trees

- Preorder: Root, then Children
 \(+ A * B / C D \)
- Postorder: Children, then Root
 \(A B C D / + \)
- Inorder: Left child, Root, Right child
 \(A + B * C / D \)

Example Code for Recursive Preorder

```c
void print_preorder ( TreeNode T )
{
    if ( T == NULL ) return;
    else {
        print_element(T->Element);
        P = T->FirstChild;
        while (P != NULL) {
            print_preorder ( P );
            P = P->NextSibling;
        }
    }
}
```

What is the running time for a tree with \(N \) nodes?

Preorder Traversal with a Stack

```c
void Stack_Preorder (TreeNode T, Stack S)
{
    if (T == NULL) return; else push(T,S);
    while (!isempty(S)) {
        T = pop(S);
        print_element(T->Element);
        if (T->Right != NULL) push(T->Right, S);
        if (T->Left != NULL) push(T->Left, S);
    }
}
```

What is the running time for a tree with \(N \) nodes?
Binary Trees
✦ Every node has at most two children
 ★ Most popular tree in computer science
✦ Given N nodes, what is the minimum depth of a binary tree?
✦ What is the maximum depth of a binary tree?

Given N nodes, what is the minimum depth of a binary tree?
★ At depth d, you can have N = 2^d to 2^{d+1} - 1 nodes (a full tree)
★ So, minimum depth d is: \log N \leq d \leq \log(N+1) - 1 or \Theta(\log N)

What is the maximum depth of a binary tree?
★ Degenerate case: Tree is a linked list!
★ Maximum depth = N-1
★ Goal: Would like to keep depth at around \log N to get better performance than linked list for operations like Find.

Binary Search Trees
✦ Binary search trees are binary trees in which the value in every node is:
 ★ all values in the node’s left subtree
 ★ all values in the node’s right subtree
✦ Application: “Look-up” table
 ★ Example: Given SSN, return student record
 ★ SSN stored in each node as the key value
✦ Operations:
 ★ Find, FindMin, FindMax
 ★ Insert, Delete

Operations on Binary Search Trees
✦ How would you implement these?
 ★ Recursive definition of binary search trees allows recursive routines!
✦ Position FindMin(Tree T)
✦ Position FindMax(Tree T)
✦ Position Find(ElementType X, Tree T)
✦ Tree Insert(ElementType X, Tree T)
✦ Tree Delete(ElementType X, Tree T)
Insert Operation

- Tree Insert(ElementType X, Tree T)
 - Do a “Find” operation for X
 - If X is found, update duplicates counter
 - Else, “Find” stops at a NULL pointer
 - Insert Node with X there!

- Example: Insert 95

Delete Operation

- Delete is a bit trickier…Why?
- Suppose you want to delete 10
- Strategy:
 - Find 10
 - Delete the node containing 10
- Problem: When you delete a node, what do you replace it by?

- Problem: When you delete a node, what do you replace it by?
- Solution:
 1. If it has no children, by NULL
 2. If it has 1 child, by that child
 3. If it has 2 children, by the node with the smallest value in its right subtree
- Examples:
 1. Delete 5
 2. Delete 24 (note: recursive deletion)
 3. Delete 10 (note: recursive deletion)
Example: Delete “10”

Find 10. Replace with smallest value in right subtree

Delete smallest value in right subtree

Example: Delete “10”

Delete “11” in right subtree (recursive delete)

Find “11” 1 child, so replace by child

Delete “17” No child, so replace by NULL

Next Class:
Analysis of Binary Search Tree Operations
Other Species of Trees: AVL, splay, and B-trees
Homework #2 will be assigned

To Do:
Read Chapter 4