CSE 373 Lecture 5: Lists, Stacks, and Queues

- We will review:
\Rightarrow More lists and applications
\Rightarrow Stack ADT and applications
\Rightarrow Queue ADT and applications
\Rightarrow Introduction to Trees
- Covered in Chapter 3 of the text

To delete the node pointed to by \mathbf{P}, need a pointer to the previous node

Circularly Linked Lists

- Set the pointer of the last node to first node instead of NULL
- Useful when you want to iterate through whole list starting from any node
\Rightarrow No need to write special code to wrap around at the end
- Circular doubly linked lists speed up both the Delete and Last operations
$\Rightarrow \mathrm{O}(1)$ time for both instead of $\mathrm{O}(\mathrm{N})$

Applications of Linked Lists

- Polynomial ADT: store and manipulate single variable polynomials with non-negative exponents
\Rightarrow E.g. $10 X^{3}+4 X^{2}+7=10 X^{3}+4 X^{2}+0 X^{1}+7 X^{0}$
\Rightarrow Data structure: stores coefficients C_{i} and exponents i
- Array Implementation: C[i] $=\mathrm{C}_{\mathrm{i}}$ \Rightarrow E.g. $C[3]=10, C[2]=4, C[1]=0, C[0]=7$
\rightarrow ADT operations: Input polynomials in arrays A and B \Rightarrow Addition: C[i] = ?
\Rightarrow Multiplication: ?

Applications of Linked Lists

- Polynomial ADT: store and manipulate single variable polynomials with non-negative exponents
\Rightarrow E.g. $10 \mathrm{X}^{3}+4 \mathrm{X}^{2}+7=10 \mathrm{X}^{3}+4 \mathrm{X}^{2}+0 \mathrm{X}^{1}+7 \mathrm{X}^{0}$
\Rightarrow Data structure: stores coefficients C_{i} and exponents i
- Array Implementation: $\mathrm{C}[\mathrm{i}]=\mathrm{C}_{\mathrm{i}}$
\Rightarrow E.g. $C[3]=10, C[2]=4, C[1]=0, C[0]=7$
\rightarrow ADT operations: Input polynomials in arrays A and B
\otimes Addition: C[i] $=$ A $[1]$ + B[i]
\Rightarrow Multiplication: $C[i+j]=C[i+j]+A[i] * B[j] ;$
\uparrow Problem with Array implementation: Sparse polynomials
\Rightarrow E.g. $10 \mathrm{X}^{3000}+4 \mathrm{X}^{2}+7 \rightarrow$ Waste of space and time (C_{i} are mostly 0 s)
\Rightarrow Use singly linked list, sorted in decreasing order of exponents
R. Rao, CSE 373 Lecture 1

Applications of Linked Lists

\rightarrow Radix Sort: Sorting integers in $\mathrm{O}(\mathrm{N})$ time
\Rightarrow Bucket sort: N integers in the range 0 to $\mathrm{B}-1$

- Array Count has B elements ("buckets"), initialized to 0
- Given input integer i, Count[i]++
- Time: $\mathrm{O}(\mathrm{B}+\mathrm{N})(=\mathrm{O}(\mathrm{N})$ if B is $\Theta(\mathrm{N}))$
\Rightarrow Radix sort $=$ bucket sort on digits of integers
- Bucket-sort from least significant to most significant digit
- Use linked list to store numbers that are in same bucket
- Takes $\mathrm{O}(\mathrm{P}(\mathrm{B}+\mathrm{N}))$ time where $\mathrm{P}=$ number of digits
- Multilists: Two (or more) lists combined into one
\Rightarrow E.g. Students and course registrations
\Rightarrow Two inter-linked circularly linked lists - one for students in course, other for courses taken by student

Stacks

- Recall: Array implementation of Lists
\Rightarrow Insert and Delete take $\mathrm{O}(\mathrm{N})$ time (need to shift elements)
- What if we avoid shifting by inserting and deleting only at the end of the list?
\Leftrightarrow Both operations take $\mathrm{O}(1)$ time!
- Stack: Same as list except that Insert/Delete allowed only at the end of the list (the top)
- "LIFO" - Last in, First out
- Push: Insert element at top
- Pop: Return and delete top element

R. Rao, CSE 373 Lecture 1

Stack ADT

- Operations:
\Rightarrow void push(Stack S, ElementType E)
\Rightarrow ElementType pop(Stack S)
\Rightarrow ElementType top(Stack S)
\Rightarrow int isEmpty(Stack S)
\Rightarrow void MakeEmpty(Stack S)
- Implementations
\Rightarrow Pointer-based: Linked list with header, S->Next points to top of stack
\Rightarrow Array-based: Pre-allocate array, top is Stack[TopofStack]
- Run time: All operations are $\mathrm{O}(1)$ (except MakeEmpty for pointer implementation which takes $\Theta(\mathrm{N})$).

Applications of Stacks I

- Compilers and Word Processors: Balancing symbols \Rightarrow E.g. ($\mathrm{i}+5 *(17-\mathrm{j} /(6 * \mathrm{k}))$ is not balanced -")" is missing
- Balance Checker using Stacks:
\Rightarrow Make an empty stack and start reading symbols
\Rightarrow If input is an opening symbol, Push onto stack
\Rightarrow If input is a closing symbol
- If stack is empty, report error
- Else, Pop the stack

Report error if popped symbol is not corresponding open symbol
\Rightarrow If EOF and stack is not empty, report error
\uparrow Run time: $\mathrm{O}(\mathrm{N})$ for N symbols

Applications of Stacks II

- Handling function calls in programming languages
\Rightarrow Example: Two functions f and g calling each other: need to store current environment (input parameters, local variables, address to return to, etc.)
function $f($ int x, int $y)\{$
int a;
if (term_cond) return ...;
$\mathrm{a}=\ldots$;
return $\mathrm{g}(\mathrm{a})$;
\}
function $g($ int $z)$ \{
int $p, q ;$
$p=\ldots . ; q=\ldots$;
return $f(p, q)$;
\}
R. Rao, CSE 373 Lecture 1

Current environment

Queues

\uparrow Consider a list ADT that inserts only at one end and deletes only at other end - this results in a Queue

- Queues are "FIFO" - first in, first out
- Instead of Push and Pop, we have Enqueue and Dequeue
- Why not just use stacks?
\Rightarrow Items can get buried in stacks and do not appear at the top for a long time - not fair to old items.
\Rightarrow A queue ensures "fairness" e.g. callers waiting on a customer hotline

Queue ADT

- Operations:
\Rightarrow void Enqueue(ElementType E, Queue Q)
\Rightarrow ElementType Dequeue(Queue Q)
\Leftrightarrow int IsEmpty(Queue Q)
\Rightarrow int MakeEmpty(Queue Q)
\Rightarrow ElementType Front(Queue Q)
- Implementations:
\Rightarrow Pointer-based is natural - what pointers do you need to keep track of for $\mathrm{O}(1)$ implementation of Enqueue and Dequeue?
\Rightarrow Array-based: can use List operatons Insert and Delete, but $\mathrm{O}(\mathrm{N})$ time
\Rightarrow How can you make array-based Enqueue and Dequeue O(1) time?

Queue ADT

- Operations:
\Rightarrow void Enqueue(ElementType E, Queue Q)
\Rightarrow ElementType Dequeue(Queue Q)
\Rightarrow int IsEmpty(Queue Q)
\Rightarrow int MakeEmpty(Queue Q)
\Rightarrow ElementType Front(Queue Q)
\rightarrow Implementations:
\Rightarrow Pointer-based is natural - what pointers do you need to keep track of for $\mathrm{O}(1)$ implementation of Enqueue and Dequeue?
\Rightarrow Array-based: can use List operatons Insert and Delete, but $\mathrm{O}(\mathrm{N})$ time
\Rightarrow How can you make array-based Enqueue and Dequeue O(1) time? - Use Front and Rear indices: Rear incremented for Enqueue and Front incremented for Dequeue

Applications of Queues

- File servers: Users needing access to their files on a shared file server machine are given access on a FIFO basis
- Printer Queue: Jobs submitted to a printer are printed in order of arrival
- Phone calls made to customer service hotlines are usually placed in a queue
- Expected wait-time of real-life queues such as customers on phone lines or ticket counters may be too hard to solve analytically \rightarrow use queue ADT for simulation

