Lecture 27: The Grand Finale

✦ Agenda for the final class:
 ✓ P, NP, and NP-completeness
 ✓ The NP =? P problem
 ✓ Major extra-credit problem
 ✓ Final Review
 ✓ Summary of what you've learned in this course
 ✓ End-of-quarter M.o.M. party
 ✓ Munch on munchies as you leave…

The “complexity” class NP

✦ Definition: NP is the set of all problems for which a given candidate solution can be tested in polynomial time
 ✓ Suppose someone gives you a solution – can it be tested in polynomial time? (testing is easier than solving it)

✦ Example of a problem in NP:
 ✓ Our new friend, the Hamiltonian circuit problem: Why is it in NP?
 ✓ Given a candidate path, can test in linear time if it is a Hamiltonian circuit – just check if all vertices are visited exactly once in the candidate path (except start/finish vertex)

From Last Time: The “complexity” class P

✦ The set P is defined as the set of all problems that can be solved in polynomial worse case time
 ✓ Also known as the polynomial time complexity class – contains problems whose time complexity is $O(N^k)$ for some k

✦ Examples of problems in P: searching, sorting, topological sort, single-source shortest path, Euler circuit, etc.

Why NP?

✦ NP stands for Nondeterministic Polynomial time
 ✓ Why “nondeterministic”? Corresponds to algorithms that can search all possible solutions in parallel and pick the correct one – each solution can be checked in polynomial time
 ✓ Nondeterministic algorithms don’t exist – purely theoretical idea invented to understand how hard a problem could be

✦ Examples of problems in NP:
 ✓ Hamiltonian circuit: Given a candidate path, can test in linear time if it is a Hamiltonian circuit
 ✓ Sorting: Can test in linear time if a candidate ordering is sorted
 ✓ Sorting is also in P. Are any other problems in P also in NP?
More revelations about NP

✦ Sorting is in P. Are any other problems in P also in NP?
 ➤ YES! All problems in P are also in NP \(\Rightarrow P \subseteq NP \)
 ✦ If you can solve a problem in polynomial time, can definitely verify a solution in polynomial time
✦ Question: Are all problems in NP also in P?
 ➤ Is \(NP \subseteq P \)?

NP-complete problems

✦ The “hardest” problems in NP are called NP-complete (NPC) problems
✦ Why “hardest”? A problem X is NP-complete if:
 1. X is in NP and
 2. any problem Y in NP can be converted to X in polynomial time, such that solving X also provides a solution for Y
 ➤ Can use algorithm for X as a subroutine to solve Y
✦ Thus, if you find a poly time algorithm for just one NPC problem, all problems in NP can be solved in poly time
✦ Example: The Hamiltonian circuit problem can be shown to be NP-complete (not so easy to prove!)

Your chance to win a Turing award: \(P = NP \)?

✦ Nobody knows whether \(NP \subseteq P \)
 ➤ Proving or disproving this will bring you instant fame!
✦ It is generally believed that \(P \neq NP \) i.e. there are problems in NP that are not in P
 ➤ But no one has been able to show even one such problem
✦ A very large number of problems are in NP (such as the Hamiltonian circuit problem)
 ➤ No one has found fast (polynomial time) algorithms for these problems
 ➤ On the other hand, no one has been able to prove such algorithms don’t exist (i.e. that these problems are not in P)?

P, NP, and Exponential Time Problems

✦ All algorithms for NP-complete problems so far have tended to run in nearly exponential worst case time
 ➤ But this doesn’t mean fast sub-exponential time algorithms don’t exist! Not proven yet…
✦ Diagram depicts relationship between P, NP, and EXPTIME (class of problems that require exponential time to solve)
 ➤ It is believed that \(P \neq NP \neq EXPTIME \)
The “graph” of NP-completeness

✦ Cook first showed (in 1971) that satisfiability of Boolean formulas (SAT) is NP-complete
✦ Hundreds of other problems (from scheduling and databases to optimization theory) have since been shown to be NPC
✦ How? By showing an algorithm that converts a known NPC problem to your pet problem in poly time → then, your problem is also NPC!

Showing NP-completeness: An example

✦ Consider the Traveling Salesperson (TSP) Problem: Given a fully connected, weighted graph \(G = (V,E) \), is there a cycle that visits all vertices exactly once and has total cost \(\leq K \)?
✦ TSP is in NP (why?)
✦ Can we show TSP is NP-complete?
 ➤ Hamiltonian Circuit (HC) is NPC
 ➤ Can show TSP is also NPC if we can convert any input for HC to an input for TSP in poly time

TSP is NP-complete!

✦ We can show TSP is also NPC if we can convert any input for HC to an input for TSP in poly time. Here’s one way:

Coping with NP-completeness

✦ Given that it is difficult to find fast algorithms for NPC problems, what do we do?
✦ Alternatives:
 1. Dynamic programming: Avoid repeatedly solving the same subproblem—use table to store results (see Chap. 10)
 2. Settle for algorithms that are fast on average: Worst case still takes exponential time, but doesn’t occur very often
 3. Settle for fast algorithms that give near-optimal solutions: In TSP, may not give the cheapest tour, but maybe good enough
 4. Try to get a “wimpy exponential” time algorithm: It’s okay if running time is \(O(1.00001^N) \) – bad only for \(N > 1,000,000 \)
Yawn…What does all this have to do with data structures and programming?

✦ Top 5 reasons to know and understand NP-completeness:

5. What if there’s an NP-completeness question in the final?
4. When you are having a tough time programming a fast algorithm for a problem, you could show it is NP-complete.
3. When you are having a tough time programming a fast algorithm for a problem, you could just say it is NPC (and many will believe you (yes, it’s a sad state of affairs))
2. When you are at a cocktail party, you can impress your friends with your profound knowledge of NP-completeness.
1. Make money with new T-shirt slogan: “And God said: P=NP”

Final Review: What you need to know

✦ Basic Math
- Logs, exponents, summation of series
- Proof by induction

✦ Asymptotic Analysis
- Big-oh, little-oh, Theta and Omega
- Know the definitions and how to show f(N) is big-oh/little-oh/Theta/Omega of (g(N))
- How to estimate Running Time of code fragments
 - E.g. nested “for” loops

✦ Recurrence Relations
- Deriving recurrence relation for run time of a recursive function
- Solving recurrence relations by expansion to get run time

Final Review

(“We’ve covered way too much in this course… What do I really need to know?”)
Final Review: What you need to know

- **Binary Search Trees**
 - How to do Find, Insert, Delete
 - Bad worst case performance – could take up to O(N) time
 - AVL trees
 - Balance factor is +1, 0, -1
 - Know single and double rotations to keep tree balanced
 - All operations are O(log N) worst case time
 - Splay trees – good amortized performance
 - A single operation may take O(N) time but in a sequence of operations, average time per operation is O(log N)
 - Every Find, Insert, Delete causes accessed node to be moved to the root
 - Know how to zig-zig, zig-zag, etc. to “bubble” node to top
 - B-trees: Know basic idea behind Insert/Delete

- **AVL trees**
 - Balance factor is +1, 0, -1
 - Know single and double rotations to keep tree balanced
 - All operations are O(log N) worst case time

- **Splay trees**
 - Good amortized performance
 - As a sequence of operations, average time per operation is O(log N)
 - Every Find, Insert, Delete causes accessed node to be moved to the root
 - Know how to zig-zig, zig-zag, etc. to “bubble” node to top

- **B-trees**
 - Know basic idea behind Insert/Delete

Final Review: What you need to know

- **Priority Queues**
 - Binary Heaps: Insert/DeleteMin, Percolate up/down
 - Array implementation
 - BuildHeap takes only O(N) time (used in heapsort)
 - Binomial Queues: Forest of binomial trees with heap order
 - Merge is fast – O(log N) time
 - Insert and DeleteMin based on Merge
 - Hashing
 - Hash functions based on the mod function
 - Collision resolution strategies
 - Chaining, Linear and Quadratic probing, Double Hashing
 - Load factor of a hash table

Final Review: What you need to know

- **Sorting Algorithms**
 - Know run times and how they work
 - Elementary sorting algorithms and their run time
 - Bubble sort, Selection sort, Insertion sort
 - Shellsort – based on several passes of Insertion sort
 - Increment Sequence
 - Heapsort – based on binary heaps (max-heaps)
 - BuildHeap and repeated DeleteMax’
 - MergeSort – recursive divide-and-conquer, uses extra array
 - Quicksort – recursive divide-and-conquer, Partition in-place
 - Fastest in practice, but O(N^2) worst case time
 - Pivot selection – median-of-three works best
 - Know which of these are stable and in-place
 - Lower bound on sorting, bucket sort, and radix sort

- **Disjoint Sets and Union-Find**
 - Up-trees and their array-based implementation
 - Know how Union-by-size and Path compression work
 - No need to know run time analysis – just know the result:
 - Sequence of M operations with Union-by-size and P.C. is \(\Theta(M \alpha(M,N)) \) – basically \(\Theta(1) \) amortized time per op

- **Graph Algorithms**
 - Adjacency matrix versus adjacency list representation of graphs
 - Know how to Topological sort in \(O(|V| + |E|) \) time using a queue
 - Breadth First Search (BFS) for unweighted shortest path
Final Review: What you need to know

- Graph Algorithms (cont.)
 - Dijkstra’s shortest path algorithm – greed works!
 - Know how a priority queue can speed up the algorithm
 - Depth First Search (DFS)
 - Minimum Spanning trees: Know the 2 greedy algorithms
 - Prim’s algorithm – similar to Dijkstra’s algorithm
 - Kruskal’s algorithm
 - Know how it uses a priority queue and Union/Find
 - Euler versus Hamiltonian circuits – difference in run times
 - Know what P, NP, and NP-completeness mean
 - How one problem can be “reduced” to another (e.g. input to HC can be transformed into input for TSP)

Final Exam:
Where: This room
When: Wednesday, June 6, 2:30-4:20pm

To Do:
Go over sample final exam on web site
Prepare, prepare, prepare (for the final)
Have a great summer!