Lecture 27: The Grand Finale

- ◆ Agenda for the final class:
 - ⇒ P, NP, and NP-completeness
 - ⇒ The NP =? P problem
 - Major extra-credit problem
 - ⇒ Final Review
 - Summary of what you've learned in this course
 - ⇒ End-of-quarter M.o.M. party
 - ▶ Munch on munchies as you leave...

R. Rao, CSE 373

The "complexity" class NP

- ◆ <u>Definition</u>: NP is the set of all problems for which a given candidate solution can be tested in polynomial time
 - Suppose someone gives you a solution can it be tested in polynomial time? (testing is easier than solving it)
- ◆ Example of a problem in NP:
 - Our new friend, the Hamiltonian circuit problem: Why is it in NP?
 - ▶ Given a candidate path, can test in linear time if it is a Hamiltonian circuit – just check if all vertices are visited exactly once in the candidate path (except start/finish vertex)

R. Rao, CSE 373 3

From Last Time: The "complexity" class P

- ◆ The set P is defined as the set of all problems that can be solved in polynomial worse case time
 - \Rightarrow Also known as the polynomial time complexity class contains problems whose time complexity is $O(N^k)$ for some k
- Examples of problems in P: searching, sorting, topological sort, single-source shortest path, Euler circuit, etc.

R. Rao, CSE 373

Why NP?

- ◆ NP stands for Nondeterministic Polynomial time
 - ⇒ Why "nondeterministic"? Corresponds to algorithms that can search all possible solutions in parallel and pick the correct one → each solution can be checked in polynomial time
 - Nondeterministic algorithms don't exist purely theoretical idea invented to understand how hard a problem could be
- ◆ Examples of problems in NP:
 - Hamiltonian circuit: Given a candidate path, can test in linear time if it is a Hamiltonian circuit
 - Sorting: Can test in linear time if a candidate ordering is sorted
 - Sorting is also in P. Are any other problems in P also in NP?

R. Rao, CSE 373 4

More revelations about NP

- ◆ Sorting is in P. Are any other problems in P also in NP?
 - \Rightarrow YES! <u>All</u> problems in P are also in NP \rightarrow P \subseteq NP
 - ▶ If you can solve a problem in polynomial time, can definitely verify a solution in polynomial time
- Question: Are all problems in NP also in P?
 ⇒ Is NP ⊆ P?

R. Rao, CSE 373

NP-complete problems

- ◆ The "hardest" problems in NP are called <u>NP-complete</u> (NPC) problems
- ◆ Why "hardest"? A problem X is NP-complete if:
 - 1. X is in NP and
 - any problem Y in NP can be converted to X in
 polynomial time, such that solving X also provides a
 solution for Y → Can use algorithm for X as a subroutine
 to solve Y
- Thus, if you find a poly time algorithm for just one NPC problem, all problems in NP can be solved in poly time
- ◆ Example: The Hamiltonian circuit problem can be shown to be NP-complete (not so easy to prove!)

R. Rao, CSE 373 7

Your chance to win a Turing award: P = NP?

- Nobody knows whether NP ⊆ P
 Proving or disproving this will bring you instant fame!
- It is generally believed that P ≠ NP i.e. there are problems in NP that are not in P
 - ⇒ But no one has been able to show even one such problem
- ◆ A very large number of problems are in NP (such as the Hamiltonian circuit problem)
 - No one has found fast (polynomial time) algorithms for these problems
 - On the other hand, no one has been able to prove such algorithms don't exist (i.e. that these problems are not in P)!

o, CSE 373

P, NP, and Exponential Time Problems

- ◆ All algorithms for NPcomplete problems so far have tended to run in nearly exponential worst case time
 - ⇒ But this doesn't mean fast sub-exponential time algorithms don't exist! Not proven yet...
- ◆ Diagram depicts relationship between P, NP, and EXPTIME (class of problems that require exponential time to solve)

It is believed that $P \neq NP \neq EXPTIME$

R. Rao, CSE 373

8

The "graph" of NP-completeness

- Cook first showed (in 1971) that satisfiability of Boolean formulas (SAT) is NP-complete
- Hundreds of other problems (from scheduling and databases to optimization theory) have since been shown to be NPC
- → How? By showing an algorithm that converts a known NPC problem to your pet problem in poly time → then, your problem is also NPC!

R. Rao, CSE 373

TSP is NP-complete!

 We can show TSP is also NPC if we can convert any input for HC to an input for TSP in poly time. Here's one way:

This graph has a Hamiltonian circuit iff this fully-connected graph has a TSP cycle of total cost \leq K, where K = |V| (here, K = 5)

Rao, CSE 373

11

Showing NP-completeness: An example

- ◆ Consider the Traveling Salesperson (TSP) Problem: Given a fully connected, weighted graph G = (V,E), is there a cycle that visits all vertices exactly once and has total cost ≤ K?
- ◆ TSP is in NP (why?)
- ◆ Can we show TSP is NP-complete?
 - ⇒ Hamiltonian Circuit (HC) is NPC
 - Can show TSP is also NPC if we can convert any input for HC to an input for TSP in poly time

P Pag CSE 37

Input for HC

Coping with NP-completeness

- Given that it is difficult to find fast algorithms for NPC problems, what do we do?
- ♦ Alternatives:
 - <u>Dynamic programming</u>: Avoid repeatedly solving the same subproblem use table to store results (see Chap. 10)
 - 2. <u>Settle for algorithms that are fast on average</u>: Worst case still takes exponential time, but doesn't occur very often
 - 3. Settle for fast algorithms that give near-optimal solutions: In TSP, may not give the cheapest tour, but maybe good enough
 - 4. Try to get a "wimpy exponential" time algorithm: It's okay if running time is $O(1.00001^N)$ bad only for N>1,000,000

R. Rao, CSE 373

Yawn...What does all this have to do with data structures and programming?

- ◆ Top 5 reasons to know and understand NP-completeness:
- 5. What if there's an NP-completeness question in the final?
- 4. When you are having a tough time programming a fast algorithm for a problem, you could show it is NP-complete
- 3. When you are having a tough time programming a fast algorithm for a problem, you could just say it is NPC (and many will believe you (yes, it's a sad state of affairs))
- 2. When you are at a cocktail party, you can impress your friends with your profound knowledge of NP-completeness
- 1. Make money with new T-shirt slogan: "And God said: P=NP"

R. Rao, CSE 373

Final Review: What you need to know

Basic Math

⇒ Logs, exponents, summation of series ⇒ Proof by induction

- Asymptotic Analysis
 ⇒ Big-oh, little-oh, Theta and Omega
 ⇒ Know the definitions and how to show f(N) is big-oh/littleoh/Theta/Omega of (g(N))
 - ⇒ How to estimate Running Time of code fragments
- E.g. nested "for" loops ♦ Recurrence Relations
 - Deriving recurrence relation for run time of a recursive
 - Solving recurrence relations by expansion to get run time

R. Rao, CSE 373

Final Review

("We've covered way too much in this course... What do I really need to know?")

R. Rao, CSE 373

Final Review: What you need to know

◆ Lists, Stacks, Queues

- ❖ Brush up on ADT operations Insert/Delete, Push/Pop etc.
- Array versus pointer implementations of each data structure
- Header nodes, circular, doubly linked lists

- Definitions/Terminology: root, parent, child, height, depth etc.
- Relationship between depth and size of tree
 - \blacklozenge Depth can be between $O(log\ N)$ and O(N) for N nodes

R. Rao, CSE 373 16

Final Review: What you need to know

♦ Binary Search Trees

- ⇒ How to do Find, Insert, Delete
 - ▶ Bad worst case performance could take up to O(N) time
- AVL trees

R. Rao, CSE 373

- ▶ Balance factor is +1.0.-1
- Know single and double rotations to keep tree balanced
- All operations are O(log N) worst case time
- Splay trees good amortized performance
 - A single operation may take O(N) time but in a sequence of operations, average time per operation is O(log N)
 Every Find, Insert, Delete causes accessed node to be
 - Every Find, Insert, Delete causes accessed node to be moved to the root
- ▶ Know how to zig-zig, zig-zag, etc. to "bubble" node to top
- ⇒ B-trees: Know basic idea behind Insert/Delete

Final Review: What you need to know

- ◆ Sorting Algorithms: Know run times and how they work
 - Elementary sorting algorithms and their run time
 - ▶ Bubble sort, Selection sort, Insertion sort
 - Shellsort based on several passes of Insertion sort
 - ▶ Increment Sequence
 - ⇒ Heapsort based on binary heaps (max-heaps)
 - ▶ BuildHeap and repeated DeleteMax's
 - ⇒ Mergesort recursive divide-and-conquer, uses extra array
 - ❖ Quicksort recursive divide-and-conquer, Partition in-place

19

- ♦ fastest in practice, but O(N²) worst case time
- ▶ Pivot selection median-of-three works best
 ❖ Know which of these are stable and in-place
- ⇒ Lower bound on sorting, bucket sort, and radix sort

Final Review: What you need to know

♦ Priority Queues

- $\mathrel{$\rightleftharpoons$}$ Binary Heaps: Insert/DeleteMin, Percolate up/down
 - ♠ Array implementation
- ▶ BuildHeap takes only O(N) time (used in heapsort)
- ⇒ Binomial Queues: Forest of binomial trees with heap order
 - ▶ Merge is fast O(log N) time
 - ▶ Insert and DeleteMin based on Merge

♦ Hashing

- Hash functions based on the mod function
- Collision resolution strategies
- ♦ Chaining, Linear and Quadratic probing, Double Hashing
- Load factor of a hash table

Final Review: What you need to know

◆ Disjoint Sets and Union-Find

- $\mathrel{\diamondsuit}$ Up-trees and their array-based implementation
- Sknow how Union-by-size and Path compression work
- ⇒ No need to know run time analysis just know the result:
 - Sequence of M operations with Union-by-size and P.C. is $\Theta(M \alpha(M,N))$ basically $\Theta(1)$ amortized time per op

◆ Graph Algorithms

- Adjacency matrix versus adjacency list representation of graphs
- \Rightarrow Know how to Topological sort in O(|V| + |E|) time using a queue
- ⇒ Breadth First Search (BFS) for unweighted shortest path

R. Rao, CSE 373 20

Final Review: What you need to know

- ◆ Graph Algorithms (cont.)
 - ⇒ Dijkstra's shortest path algorithm greed works!
 - ▶ Know how a priority queue can speed up the algorithm
 - ⇒ Depth First Search (DFS)
 - Alinimum Spanning trees: Know the 2 greedy algorithms
 - ▶ Prim's algorithm similar to Dijkstra's algorithm
 - ▶ Kruskal's algorithm
 - Know how it uses a priority queue and Union/Find
 - ▶ Euler versus Hamiltonian circuits difference in run times
 - ▶ Know what P, NP, and NP-completeness mean
 - How one problem can be "reduced" to another (e.g. input to HC can be transformed into input for TSP)

R. Rao, CSE 373

. .

Final Exam:

Where: This room

When: Wednesday, June 6, 2:30-4:20pm

To Do:

Go over sample final exam on web site Prepare, prepare, prepare (for the final) Have a great summer!

R. Rao, CSE 373

22