
1R. Rao, CSE 373

Lecture 27: The Grand Finale

✦ Agenda for the final class:
➭ P, NP, and NP-completeness
➭ The NP =? P problem

➧ Major extra-credit problem
➭ Final Review

➧ Summary of what you’ve learned in this course
➭ End-of-quarter M.o.M. party

➧ Munch on munchies as you leave…

2R. Rao, CSE 373

From Last Time: The “complexity” class P

✦ The set P is defined as the set of all problems that can be
solved in polynomial worse case time
➭ Also known as the polynomial time complexity class –

contains problems whose time complexity is O(Nk) for some k

✦ Examples of problems in P: searching, sorting, topological
sort, single-source shortest path, Euler circuit, etc.

3R. Rao, CSE 373

The “complexity” class NP

✦ Definition: NP is the set of all problems for which a given
candidate solution can be tested in polynomial time
➭ Suppose someone gives you a solution – can it be tested in

polynomial time? (testing is easier than solving it)

✦ Example of a problem in NP:
➭ Our new friend, the Hamiltonian circuit problem: Why is

it in NP?
➧ Given a candidate path, can test in linear time if it is a

Hamiltonian circuit – just check if all vertices are visited
exactly once in the candidate path (except start/finish
vertex)

4R. Rao, CSE 373

Why NP?

✦ NP stands for Nondeterministic Polynomial time
➭ Why “nondeterministic”? Corresponds to algorithms that can

search all possible solutions in parallel and pick the correct
one ! each solution can be checked in polynomial time

➭ Nondeterministic algorithms don’t exist – purely theoretical
idea invented to understand how hard a problem could be

✦ Examples of problems in NP:
➭ Hamiltonian circuit: Given a candidate path, can test in linear

time if it is a Hamiltonian circuit
➭ Sorting: Can test in linear time if a candidate ordering is

sorted
➭ Sorting is also in P. Are any other problems in P also in NP?

5R. Rao, CSE 373

More revelations about NP

✦ Sorting is in P. Are any other problems in P also in NP?
➭ YES! All problems in P are also in NP ! P ⊆ NP

➧ If you can solve a problem in polynomial time, can
definitely verify a solution in polynomial time

✦ Question: Are all problems in NP also in P?
➭ Is NP ⊆ P?

6R. Rao, CSE 373

Your chance to win a Turing award: P = NP?

✦ Nobody knows whether NP ⊆ P
➭ Proving or disproving this will bring you instant fame!

✦ It is generally believed that P ≠ NP i.e. there are problems in
NP that are not in P
➭ But no one has been able to show even one such problem

✦ A very large number of problems are in NP (such as the
Hamiltonian circuit problem)
➭ No one has found fast (polynomial time) algorithms for these

problems
➭ On the other hand, no one has been able to prove such

algorithms don’t exist (i.e. that these problems are not in P)!

7R. Rao, CSE 373

NP-complete problems

✦ The “hardest” problems in NP are called NP-complete
(NPC) problems

✦ Why “hardest”? A problem X is NP-complete if:
1. X is in NP and
2. any problem Y in NP can be converted to X in

polynomial time, such that solving X also provides a
solution for Y ! Can use algorithm for X as a subroutine
to solve Y

✦ Thus, if you find a poly time algorithm for just one NPC
problem, all problems in NP can be solved in poly time

✦ Example: The Hamiltonian circuit problem can be shown
to be NP-complete (not so easy to prove!)

8R. Rao, CSE 373

P, NP, and Exponential Time Problems

✦ All algorithms for NP-
complete problems so far have
tended to run in nearly
exponential worst case time
➭ But this doesn’t mean fast

sub-exponential time
algorithms don’t exist! Not
proven yet…

✦ Diagram depicts relationship
between P, NP, and EXPTIME
(class of problems that require
exponential time to solve)

It is believed that
P ≠ NP ≠ EXPTIME

EXPTIME

NP

P

NPC

9R. Rao, CSE 373

The “graph” of NP-completeness

✦ Cook first showed (in 1971)
that satisfiability of Boolean
formulas (SAT) is NP-complete

✦ Hundreds of other problems
(from scheduling and databases
to optimization theory) have
since been shown to be NPC

✦ How? By showing an algorithm
that converts a known NPC
problem to your pet problem in
poly time ! then, your
problem is also NPC!

10R. Rao, CSE 373

Showing NP-completeness: An example

✦ Consider the Traveling
Salesperson (TSP) Problem:
Given a fully connected, weighted
graph G = (V,E), is there a cycle
that visits all vertices exactly once
and has total cost ≤ K?

✦ TSP is in NP (why?)

✦ Can we show TSP is NP-
complete?
➭ Hamiltonian Circuit (HC) is NPC
➭ Can show TSP is also NPC if we

can convert any input for HC to
an input for TSP in poly time

B C

D E

G

Input for HC

B C

D E

Convert
to input
for TSP

Cycle
with cost
≤ 8 !
BDCEB

3

3

1

1
2

4

11R. Rao, CSE 373

TSP is NP-complete!

✦ We can show TSP is also NPC if we can convert any input
for HC to an input for TSP in poly time. Here’s one way:

B C

D E

G

B C

D E

G

This graph has a Hamiltonian circuit iff this fully-connected graph
has a TSP cycle of total cost ≤ K, where K = |V| (here, K = 5)

HC TSP

2 2

1 1

1

1

1

1

1

1

12R. Rao, CSE 373

Coping with NP-completeness

✦ Given that it is difficult to find fast algorithms for NPC
problems, what do we do?

✦ Alternatives:
1. Dynamic programming: Avoid repeatedly solving the same

subproblem – use table to store results (see Chap. 10)
2. Settle for algorithms that are fast on average: Worst case still

takes exponential time, but doesn’t occur very often
3. Settle for fast algorithms that give near-optimal solutions: In

TSP, may not give the cheapest tour, but maybe good enough
4. Try to get a “wimpy exponential” time algorithm: It’s okay if

running time is O(1.00001N) – bad only for N > 1,000,000

13R. Rao, CSE 373

Yawn…What does all this have to do with data
structures and programming?

✦ Top 5 reasons to know and understand NP-completeness:

5. What if there’s an NP-completeness question in the final?

4. When you are having a tough time programming a fast
algorithm for a problem, you could show it is NP-complete

3. When you are having a tough time programming a fast
algorithm for a problem, you could just say it is NPC (and
many will believe you (yes, it’s a sad state of affairs))

2. When you are at a cocktail party, you can impress your
friends with your profound knowledge of NP-completeness

1. Make money with new T-shirt slogan: “And God said: P=NP”

14R. Rao, CSE 373

Final Review

(“We’ve covered way too much in this course…

What do I really need to know?”)

15R. Rao, CSE 373

Final Review: What you need to know

✦ Basic Math
➭ Logs, exponents, summation of series
➭ Proof by induction

✦ Asymptotic Analysis
➭ Big-oh, little-oh, Theta and Omega
➭ Know the definitions and how to show f(N) is big-oh/little-

oh/Theta/Omega of (g(N))
➭ How to estimate Running Time of code fragments

➧ E.g. nested “for” loops

✦ Recurrence Relations
➭ Deriving recurrence relation for run time of a recursive

function
➭ Solving recurrence relations by expansion to get run time

∑
=

+=
N

i

NN
i

1 2

)1(

1

11

0 −
−=

+

=
∑

A

A
A

NN

i

i

16R. Rao, CSE 373

✦ Lists, Stacks, Queues
➭ Brush up on ADT operations – Insert/Delete, Push/Pop etc.
➭ Array versus pointer implementations of each data structure
➭ Header nodes, circular, doubly linked lists

✦ Trees
➭ Definitions/Terminology: root, parent, child, height, depth etc.
➭ Relationship between depth and size of tree

➧ Depth can be between O(log N) and O(N) for N nodes

Final Review: What you need to know

17R. Rao, CSE 373

✦ Binary Search Trees
➭ How to do Find, Insert, Delete

➧ Bad worst case performance – could take up to O(N) time
➭ AVL trees

➧ Balance factor is +1, 0, -1
➧ Know single and double rotations to keep tree balanced
➧ All operations are O(log N) worst case time

➭ Splay trees – good amortized performance
➧ A single operation may take O(N) time but in a sequence of

operations, average time per operation is O(log N)
➧ Every Find, Insert, Delete causes accessed node to be

moved to the root
➧ Know how to zig-zig, zig-zag, etc. to “bubble” node to top

➭ B-trees: Know basic idea behind Insert/Delete

Final Review: What you need to know

18R. Rao, CSE 373

✦ Priority Queues
➭ Binary Heaps: Insert/DeleteMin, Percolate up/down

➧ Array implementation
➧ BuildHeap takes only O(N) time (used in heapsort)

➭ Binomial Queues: Forest of binomial trees with heap order
➧ Merge is fast – O(log N) time
➧ Insert and DeleteMin based on Merge

✦ Hashing
➭ Hash functions based on the mod function
➭ Collision resolution strategies

➧ Chaining, Linear and Quadratic probing, Double Hashing
➭ Load factor of a hash table

Final Review: What you need to know

19R. Rao, CSE 373

✦ Sorting Algorithms: Know run times and how they work
➭ Elementary sorting algorithms and their run time

➧ Bubble sort, Selection sort, Insertion sort
➭ Shellsort – based on several passes of Insertion sort

➧ Increment Sequence
➭ Heapsort – based on binary heaps (max-heaps)

➧ BuildHeap and repeated DeleteMax’s
➭ Mergesort – recursive divide-and-conquer, uses extra array
➭ Quicksort – recursive divide-and-conquer, Partition in-place

➧ fastest in practice, but O(N2) worst case time
➧ Pivot selection – median-of-three works best

➭ Know which of these are stable and in-place
➭ Lower bound on sorting, bucket sort, and radix sort

Final Review: What you need to know

20R. Rao, CSE 373

✦ Disjoint Sets and Union-Find
➭ Up-trees and their array-based implementation
➭ Know how Union-by-size and Path compression work
➭ No need to know run time analysis – just know the result:

➧ Sequence of M operations with Union-by-size and P.C. is
Θ(M α(M,N)) – basically Θ(1) amortized time per op

✦ Graph Algorithms
➭ Adjacency matrix versus adjacency list representation of

graphs
➭ Know how to Topological sort in O(|V| + |E|) time using a

queue
➭ Breadth First Search (BFS) for unweighted shortest path

Final Review: What you need to know

21R. Rao, CSE 373

Final Review: What you need to know

✦ Graph Algorithms (cont.)
➭ Dijkstra’s shortest path algorithm – greed works!

➧ Know how a priority queue can speed up the algorithm
➭ Depth First Search (DFS)
➭ Minimum Spanning trees: Know the 2 greedy algorithms

➧ Prim’s algorithm – similar to Dijkstra’s algorithm
➧ Kruskal’s algorithm

� Know how it uses a priority queue and Union/Find
➧ Euler versus Hamiltonian circuits – difference in run times
➧ Know what P, NP, and NP-completeness mean

� How one problem can be “reduced” to another (e.g.
input to HC can be transformed into input for TSP)

22R. Rao, CSE 373

Final Exam:

Where: This room

When: Wednesday, June 6, 2:30-4:20pm

To Do:

Go over sample final exam on web site

Prepare, prepare, prepare (for the final)

Have a great summer!

