Lecture 27: The Grand Finale

- **Agenda for the final class:**
 - P, NP, and NP-completeness
 - The NP =? P problem
 - Major extra-credit problem
 - Final Review
 - Summary of what you’ve learned in this course
 - End-of-quarter M.o.M. party
 - Munch on munchies as you leave…

From Last Time: The “complexity” class P

- The set P is defined as the set of all problems that can be solved in polynomial worse case time
 - Also known as the polynomial time complexity class – contains problems whose time complexity is $O(N^k)$ for some k
- **Examples of problems in P:** searching, sorting, topological sort, single-source shortest path, Euler circuit, etc.
The “complexity” class NP

- **Definition**: NP is the set of all problems for which a given candidate solution can be tested in polynomial time
 - Suppose someone gives you a solution – can it be tested in polynomial time? (testing is easier than solving it)

- **Example of a problem in NP**:
 - **Our new friend, the Hamiltonian circuit problem**: Why is it in NP?
 - Given a candidate path, can test in linear time if it is a Hamiltonian circuit – just check if all vertices are visited exactly once in the candidate path (except start/finish vertex)

Why NP?

- **NP stands for Nondeterministic Polynomial time**
 - Why “nondeterministic”? Corresponds to algorithms that can search all possible solutions in parallel and pick the correct one → each solution can be checked in polynomial time
 - Nondeterministic algorithms don’t exist – purely theoretical idea invented to understand how hard a problem could be

- **Examples of problems in NP**:
 - **Hamiltonian circuit**: Given a candidate path, can test in linear time if it is a Hamiltonian circuit
 - **Sorting**: Can test in linear time if a candidate ordering is sorted
 - Sorting is also in P. Are any other problems in P also in NP?
More revelations about NP

- Sorting is in P. Are any other problems in P also in NP?
 - YES! All problems in P are also in NP \(\Rightarrow P \subseteq NP \)
 - If you can solve a problem in polynomial time, can definitely verify a solution in polynomial time

- Question: Are all problems in NP also in P?
 - Is \(NP \subseteq P \)?

Your chance to win a Turing award: \(P = NP \)?

- Nobody knows whether \(NP \subseteq P \)
 - Proving or disproving this will bring you instant fame!

- It is generally believed that \(P \neq NP \) i.e. there are problems in NP that are not in P
 - But no one has been able to show even one such problem

- A very large number of problems are in NP (such as the Hamiltonian circuit problem)
 - No one has found fast (polynomial time) algorithms for these problems
 - On the other hand, no one has been able to prove such algorithms don’t exist (i.e. that these problems are not in P)!
NP-complete problems

- The “hardest” problems in NP are called **NP-complete** (NPC) problems
- Why “hardest”? A problem X is NP-complete if:
 1. X is in NP and
 2. any problem Y in NP can be converted to X in polynomial time, such that solving X also provides a solution for Y \(\Rightarrow\) Can use algorithm for X as a subroutine to solve Y
- Thus, if you find a poly time algorithm for just one NPC problem, all problems in NP can be solved in poly time
- **Example**: The Hamiltonian circuit problem can be shown to be NP-complete (not so easy to prove!)

P, NP, and Exponential Time Problems

- All algorithms for NP-complete problems so far have tended to run in nearly exponential worst case time
 \(\Rightarrow\) But this doesn’t mean fast sub-exponential time algorithms don’t exist! Not proven yet…
- Diagram depicts relationship between P, NP, and EXPTIME (class of problems that require exponential time to solve)

 It is believed that
 \[P \neq NP \neq EXPTIME \]
The “graph” of NP-completeness

✦ Cook first showed (in 1971) that satisfiability of Boolean formulas (SAT) is NP-complete

✦ Hundreds of other problems (from scheduling and databases to optimization theory) have since been shown to be NPC

✦ How? By showing an algorithm that converts a known NPC problem to your pet problem in poly time → then, your problem is also NPC!

Showing NP-completeness: An example

✦ Consider the Traveling Salesperson (TSP) Problem: Given a fully connected, weighted graph \(G = (V, E) \), is there a cycle that visits all vertices exactly once and has total cost \(\leq K \)?

✦ TSP is in NP (why?)

✦ Can we show TSP is NP-complete?
 ✦ Hamiltonian Circuit (HC) is NPC
 ✦ Can show TSP is also NPC if we can convert any input for HC to an input for TSP in poly time
TSP is NP-complete!

- We can show TSP is also NPC if we can convert any input for HC to an input for TSP in poly time. Here’s one way:

This graph has a Hamiltonian circuit iff this fully-connected graph has a TSP cycle of total cost ≤ K, where K = |V| (here, K = 5)

Coping with NP-completeness

- Given that it is difficult to find fast algorithms for NPC problems, what do we do?

- Alternatives:
 1. Dynamic programming: Avoid repeatedly solving the same subproblem – use table to store results (see Chap. 10)
 2. Settle for algorithms that are fast on average: Worst case still takes exponential time, but doesn’t occur very often
 3. Settle for fast algorithms that give near-optimal solutions: In TSP, may not give the cheapest tour, but maybe good enough
 4. Try to get a “wimpy exponential” time algorithm: It’s okay if running time is O(1.00001^N) – bad only for N > 1,000,000
Yawn… What does all this have to do with data structures and programming?

- **Top 5 reasons to know and understand NP-completeness:**

 5. What if there’s an NP-completeness question in the final?

 4. When you are having a tough time programming a fast algorithm for a problem, you could show it is NP-complete.

 3. When you are having a tough time programming a fast algorithm for a problem, you could just say it is NPC (and many will believe you (yes, it’s a sad state of affairs)).

 2. When you are at a cocktail party, you can impress your friends with your profound knowledge of NP-completeness.

 1. Make money with new T-shirt slogan: “And God said: P=NP”

Final Review

(“We’ve covered way too much in this course…

What do I really need to know?”)
Final Review: What you need to know

✦ Basic Math
 ➤ Logs, exponents, summation of series
 ➤ Proof by induction

✦ Asymptotic Analysis
 ➤ Big-oh, little-oh, Theta and Omega
 ➤ Know the definitions and how to show f(N) is big-oh/little-oh/Theta/Omega of (g(N))
 ➤ How to estimate Running Time of code fragments
 ➤ E.g. nested “for” loops

✦ Recurrence Relations
 ➤ Deriving recurrence relation for run time of a recursive function
 ➤ Solving recurrence relations by expansion to get run time

\[\sum_{i=1}^{N} i = \frac{N(N+1)}{2} \]
\[\sum_{i=0}^{N} A_i = \frac{A^{N+1} - 1}{A - 1} \]

Final Review: What you need to know

✦ Lists, Stacks, Queues
 ➤ Brush up on ADT operations – Insert/Delete, Push/Pop etc.
 ➤ Array versus pointer implementations of each data structure
 ➤ Header nodes, circular, doubly linked lists

✦ Trees
 ➤ Definitions/Terminology: root, parent, child, height, depth etc.
 ➤ Relationship between depth and size of tree
 ➤ Depth can be between O(log N) and O(N) for N nodes
Final Review: What you need to know

Binary Search Trees
- How to do Find, Insert, Delete
 - Bad worst case performance – could take up to O(N) time
- AVL trees
 - Balance factor is +1, 0, -1
 - Know single and double rotations to keep tree balanced
 - All operations are O(log N) worst case time
- Splay trees – good amortized performance
 - A single operation may take O(N) time but in a sequence of operations, average time per operation is O(log N)
 - Every Find, Insert, Delete causes accessed node to be moved to the root
 - Know how to zig-zig, zig-zag, etc. to “bubble” node to top
- B-trees: Know basic idea behind Insert/Delete

Priority Queues
- Binary Heaps: Insert/DeleteMin, Percolate up/down
 - Array implementation
 - BuildHeap takes only O(N) time (used in heapsort)
- Binomial Queues: Forest of binomial trees with heap order
 - Merge is fast – O(log N) time
 - Insert and DeleteMin based on Merge

Hashing
- Hash functions based on the mod function
- Collision resolution strategies
 - Chaining, Linear and Quadratic probing, Double Hashing
- Load factor of a hash table
Final Review: What you need to know

✦ **Sorting Algorithms:** Know run times and how they work
 ➤ Elementary sorting algorithms and their run time
 ◦ Bubble sort, Selection sort, Insertion sort
 ➤ Shellsort – based on several passes of Insertion sort
 ◦ Increment Sequence
 ➤ Heapsort – based on binary heaps (max-heaps)
 ◦ BuildHeap and repeated DeleteMax’s
 ➤ Mergesort – recursive divide-and-conquer, uses extra array
 ➤ Quicksort – recursive divide-and-conquer, Partition in-place
 ◦ fastest in practice, but O(N^2) worst case time
 ◦ Pivot selection – median-of-three works best
 ➤ Know which of these are stable and in-place
 ➤ Lower bound on sorting, bucket sort, and radix sort

✦ **Disjoint Sets and Union-Find**
 ➤ Up-trees and their array-based implementation
 ➤ Know how Union-by-size and Path compression work
 ➤ No need to know run time analysis – just know the result:
 ◦ Sequence of M operations with Union-by-size and P.C. is
 Θ(M α(M,N)) – basically Θ(1) amortized time per op

✦ **Graph Algorithms**
 ➤ Adjacency matrix versus adjacency list representation of graphs
 ➤ Know how to Topological sort in O(|V| + |E|) time using a queue
 ➤ Breadth First Search (BFS) for unweighted shortest path
Final Review: What you need to know

✦ **Graph Algorithms (cont.)**
 ➤ Dijkstra’s shortest path algorithm – greed works!
 ◆ Know how a priority queue can speed up the algorithm
 ➤ Depth First Search (DFS)
 ➤ Minimum Spanning trees: Know the 2 greedy algorithms
 ◆ Prim’s algorithm – similar to Dijkstra’s algorithm
 ◆ Kruskal’s algorithm
 • Know how it uses a priority queue and Union/Find
 ◆ Euler versus Hamiltonian circuits – difference in run times
 ◆ Know what P, NP, and NP-completeness mean
 • How one problem can be “reduced” to another (e.g. input to HC can be transformed into input for TSP)

Final Exam:

Where: This room
When: Wednesday, June 6, 2:30-4:20pm

To Do:
Go over sample final exam on web site
Prepare, prepare, prepare (for the final)
Have a great summer!