Today’s Agenda:
- Solving 4th grade pencil-on-paper puzzles
- A “deep” algorithm for Euler Circuits
- Euler with a twist: Hamiltonian circuits
- Hamiltonian circuits and NP complete problems
- The NP =? P problem
 - Your chance to win a Turing award!
 - Any takers?
- Covered in Chapter 9 in the textbook

It’s Puzzle Time!

Which of these can you draw without lifting your pencil, drawing each line only once? Can you start and end at the same point? (end: memories of 4th grade days…)

Graph representation of the puzzle

Line segments = edges
Junctions = vertices

Can you traverse all edges exactly once, starting and finishing at the same vertex?

Euler Circuits

- Euler tour: a path through a graph that visits each edge exactly once
- Euler circuit: an Euler tour that starts and ends at the same vertex
- Observations:
 - An Euler circuit is only possible if the graph is connected and each vertex has even degree (# of edges onto vertex)
 - Why?
 - At every vertex, need one edge to get in and one edge to get out!
Finding Euler Circuits: DFS and then Splice

- Given a graph $G = (V, E)$, find an Euler circuit in G.
- Can check if one exists in $O(|V|)$ time (check degrees).
- Basic Euler Circuit Algorithm:
 1. Do a depth-first search (DFS) from a vertex until you are back at this vertex.
 2. Pick a vertex on this path with an unused edge and repeat 1.
 3. Splice all these paths into an Euler circuit.
- Running time = $O(|V| + |E|)$.

Euler with a Twist: Hamiltonian Circuits

- Euler circuit: A cycle that goes through each edge exactly once.
- Hamiltonian circuit: A cycle that goes through each vertex exactly once.

Does graph I have:

- An Euler circuit?
- A Hamiltonian circuit?

Does graph II have:

- An Euler circuit?
- A Hamiltonian circuit?

Finding Hamiltonian Circuits in Graphs

- Problem: Find a Hamiltonian circuit in a graph $G = (V, E)$.
- Sub-problem: Does G contain a Hamiltonian circuit?
- Is there an easy (linear time) algorithm for checking this?
Finding Hamiltonian Circuits in Graphs

✦ Problem: Find a Hamiltonian circuit in a graph $G = (V,E)$
 ✦ Sub-problem: Does G contain a Hamiltonian circuit?
 ✦ No known easy algorithm for checking this…
✦ One solution: Search through all paths to find one that visits each vertex exactly once
 ✦ Can use your favorite graph search algorithm (DFS!) to find various paths.
✦ This is an exhaustive search (“brute force”) algorithm
✦ Worst case → need to search all paths
 ✦ How many paths?!

Analysis of our Exhaustive Search Algorithm

✦ Worst case → need to search all paths
 ✦ How many paths?
✦ Can depict these paths as a search tree
✦ Let the average branching factor of each node in this tree be B (= average size of adjacency list for a vertex)
✦ $|V|$ vertices, each with B branches
✦ Total number of paths = $B \cdot B \cdot B \ldots B$ = $O(B^{|V|})$
✦ Worst case → Exponential time!
 Search tree of paths from B

How bad is exponential time?

<table>
<thead>
<tr>
<th>N</th>
<th>$\log N$</th>
<th>$N \log N$</th>
<th>N^2</th>
<th>2^N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>8</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>30</td>
<td>100</td>
<td>1024</td>
</tr>
<tr>
<td>100</td>
<td>7</td>
<td>700</td>
<td>10,000</td>
<td>$1,000,000,000,000$</td>
</tr>
<tr>
<td>1000</td>
<td>10</td>
<td>10,000</td>
<td>1,000,000</td>
<td>Fe' gettaboun'!</td>
</tr>
<tr>
<td>1,000,000</td>
<td>20</td>
<td>20,000,000</td>
<td>1,000,000,000,000</td>
<td>didn't</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>30</td>
<td>30,000,000,000</td>
<td>1,000,000,000,000,000</td>
<td>mega ditto plus</td>
</tr>
</tbody>
</table>

Polynomial versus Exponential Time

✦ Most of our algorithms so far have been $O(\log N)$, $O(N)$, $O(N \log N)$ or $O(N^2)$ running time for inputs of size N
 ✦ These are all polynomial time algorithms
 ✦ Their running time is $O(N^k)$ for some $k > 0$
✦ Exponential time B^N is asymptotically worse than any polynomial function N^k for any k
 ✦ For any k, N^k is $o(B^N)$ for any constant $B > 1$
✦ Polynomial time algorithms are generally regarded as “fast” algorithms – these are the kind we want!
✦ Exponential time algorithms are generally inefficient – avoid these!
The “complexity” class P

✦ The set P is defined as the set of all problems that can be solved in polynomial worst case time
 ➢ Also known as the polynomial time complexity class – contains problems whose time complexity is $O(N^k)$ for some k
✦ Examples of problems in P: searching, sorting, topological sort, single-source shortest path, Euler circuit, etc.

Why NP?

✦ NP stands for Nondeterministic Polynomial time
 ➢ Why “nondeterministic”? Corresponds to algorithms that can search all possible solutions in parallel and pick the correct one ➢ each solution can be checked in polynomial time
 ➢ Nondeterministic algorithms don’t exist – purely theoretical idea invented to understand how hard a problem could be
✦ Examples of problems in NP:
 ➢ Hamiltonian circuit: Given a candidate path, can test in linear time if it is a Hamiltonian circuit
 ➢ Sorting: Can test in linear time if a candidate ordering is sorted
 ➢ Sorting is also in P. Are any other problems in P also in NP?

Next Class:
More on P and NP
Review for Finals
Mini end-of-the-quarter party

To Do:
Programming Assignment #2 (Due next class)