

Ν	log N	N log N	\mathbb{N}^2	2 ^N
1	0	0	1	2
2	1	2	4	4
4	2	8	16	16
10	3	30	100	1024
100	7	700	10,000	1,000,000,000,000,000,000,000,000,000,0
1000	10	10,000	1,000,000	Fo'gettaboutit!
1,000,000	20	20,000,000	1,000,000,000,000	ditto
1,000,000,000	30	30,000,000,000	1,000,000,000,000,000,000	mega ditto plus

Why NP?

- ◆ NP stands for <u>Nondeterministic Polynomial time</u>
 - ◇ <u>Why "nondeterministic"</u>? Corresponds to algorithms that can search all possible solutions in parallel and pick the correct one → each solution can be checked in polynomial time
 - Nondeterministic algorithms don't exist purely theoretical idea invented to understand how hard a problem could be
- ← Examples of problems in NP:
 - Hamiltonian circuit: Given a candidate path, can test in linear time if it is a Hamiltonian circuit
 - ⇒ Sorting: Can test in linear time if a candidate ordering is sorted
 - Sorting is also in P. Are any other problems in P also in NP?

15

R. Rao, CSE 373

Next Class: More on P and NP Review for Finals Mini end-of-the-quarter party <u>Fo Do:</u> Programming Assignment #2 (Due next class)