Today’s Agenda:

- Solving 4th grade pencil-on-paper puzzles
 - A “deep” algorithm for Euler Circuits
- Euler with a twist: Hamiltonian circuits
- Hamiltonian circuits and NP complete problems
- The NP =? P problem
 - Your chance to win a Turing award!
 - Any takers?

Covered in Chapter 9 in the textbook

It’s Puzzle Time!

Which of these can you draw without lifting your pencil, drawing each line only once?
Can you start and end at the same point?
(end: memories of 4th grade days…)
Graph representation of the puzzle

Line segments = edges
Junctions = vertices

Can you traverse all edges exactly once, starting and finishing at the same vertex?

Euler Circuits

✦ Euler tour: a path through a graph that visits each edge exactly once
✦ Euler circuit: an Euler tour that starts and ends at the same vertex
✦ Observations:
 ⇒ An Euler circuit is only possible if the graph is connected and each vertex has even degree (# of edges onto vertex)
 ⇒ Why?
 ⇒ At every vertex, need one edge to get in and one edge to get out!
Finding Euler Circuits: DFS and then Splice

- Given a graph $G = (V,E)$, find an Euler circuit in G
 - Can check if one exists in $O(|V|)$ time (check degrees)
- Basic Euler Circuit Algorithm:
 1. Do a depth-first search (DFS) from a vertex until you are back at this vertex
 2. Pick a vertex on this path with an unused edge and repeat 1.
 3. Splice all these paths into an Euler circuit
- Running time = $O(|V| + |E|)$

Euler Circuit Example

DFS(A) : $A B D F E C A$
DFS(B) : $B G C B$
DFS(G) : $G D E G$

Splice at B $A B G C B D F E C A$
Splice at G $A B G D E G C B D F E C A$

R. Rao, CSE 373
Euler with a Twist: Hamiltonian Circuits

✦ Euler circuit: A cycle that goes through each *edge* exactly once

✦ Hamiltonian circuit: A cycle that goes through each *vertex* exactly once

✦ Does graph I have:
 ⇒ An Euler circuit?
 ⇒ A Hamiltonian circuit?

✦ Does graph II have:
 ⇒ An Euler circuit?
 ⇒ A Hamiltonian circuit?

Finding Hamiltonian Circuits in Graphs

✦ Problem: Find a Hamiltonian circuit in a graph $G = (V, E)$
 ⇒ Sub-problem: Does G contain a Hamiltonian circuit?
 ⇒ Is there an easy (linear time) algorithm for checking this?
Finding Hamiltonian Circuits in Graphs

- Problem: Find a Hamiltonian circuit in a graph $G = (V,E)$
 - Sub-problem: Does G contain a Hamiltonian circuit?
 - No known easy algorithm for checking this…

- One solution: Search through all paths to find one that visits each vertex exactly once
 - Can use your favorite graph search algorithm (DFS!) to find various paths

- This is an exhaustive search ("brute force") algorithm

- Worst case \Rightarrow need to search all paths
 - How many paths??

Analysis of our Exhaustive Search Algorithm

- Worst case \Rightarrow need to search all paths
 - How many paths?
- Can depict these paths as a search tree
- Let the average branching factor of each node in this tree be B (= average size of adjacency list for a vertex)
- $|V|$ vertices, each with $\approx B$ branches
- Total number of paths $\approx B \cdot B \cdot B \cdots B = O(B^{|V|})$
- Worst case \Rightarrow Exponential time!

Etc.
How bad is exponential time?

<table>
<thead>
<tr>
<th>N</th>
<th>log N</th>
<th>N log N</th>
<th>N²</th>
<th>2ᴺ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>8</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>30</td>
<td>100</td>
<td>1024</td>
</tr>
<tr>
<td>100</td>
<td>7</td>
<td>700</td>
<td>10,000</td>
<td>1,000,000,000,000,000,000,000,000</td>
</tr>
<tr>
<td>1000</td>
<td>10</td>
<td>10,000</td>
<td>1,000,000</td>
<td>Fo’gettaboutit!</td>
</tr>
<tr>
<td>1,000,000</td>
<td>20</td>
<td>20,000,000</td>
<td>1,000,000,000,000</td>
<td>ditto</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>30</td>
<td>30,000,000,000</td>
<td>1,000,000,000,000,000,000,000,000,000</td>
<td>mega ditto plus</td>
</tr>
</tbody>
</table>

Polynomial versus Exponential Time

- Most of our algorithms so far have been O(log N), O(N), O(N log N) or O(N²) running time for inputs of size N
 - These are all polynomial time algorithms
 - Their running time is O(Nᵏ) for some k > 0

- Exponential time Bᴺ is asymptotically worse than any polynomial function Nᵏ for any k
 - For any k, Nᵏ is o(Bᴺ) for any constant B > 1

- Polynomial time algorithms are generally regarded as “fast” algorithms – these are the kind we want!

- Exponential time algorithms are generally inefficient – avoid these!
The “complexity” class P

- The set P is defined as the set of all problems that can be solved in polynomial worse case time
 - Also known as the polynomial time complexity class – contains problems whose time complexity is $O(N^k)$ for some k
- Examples of problems in P: searching, sorting, topological sort, single-source shortest path, Euler circuit, etc.

The “complexity” class NP

- **Definition**: NP is the set of all problems for which a given candidate solution can be tested in polynomial time

- Example of a problem in NP:
 - Our new friend, the Hamiltonian circuit problem: Why is it in NP?
 - Given a candidate path, can test in linear time if it is a Hamiltonian circuit – just check if all vertices are visited exactly once in the candidate path (except start/finish vertex)
Why NP?

✦ NP stands for Nondeterministic Polynomial time
 ➤ Why “nondeterministic”? Corresponds to algorithms that can search all possible solutions in parallel and pick the correct one ➤ each solution can be checked in polynomial time
 ➤ Nondeterministic algorithms don’t exist – purely theoretical idea invented to understand how hard a problem could be

✦ Examples of problems in NP:
 ➤ Hamiltonian circuit: Given a candidate path, can test in linear time if it is a Hamiltonian circuit
 ➤ Sorting: Can test in linear time if a candidate ordering is sorted
 ➤ Sorting is also in P. Are any other problems in P also in NP?

Next Class:
More on P and NP
Review for Finals
Mini end-of-the-quarter party

To Do:
Programming Assignment #2 (Due next class)