Lecture 25: Kruskal and beyond...

- What we will munch on today:
\Rightarrow Minimum Spanning Trees
- Prim's Algorithm
- Kruskal's Algorithm
\Rightarrow Those Puzzles from $4^{\text {th }}$ grade!
\Rightarrow Euler Circuits and Tours
- Covered in Chapter 9 in the textbook

Recall from Last Time: Spanning Trees

- Spanning tree: subset of edges from a connected graph G $=(V, E)$ that:

1. touches all vertices in the graph (spans the graph), and
2. forms a tree (is connected, with no cycles $\rightarrow|\mathrm{V}|-1$ edges)

- Minimum spanning tree (MST): spanning tree with the least total edge cost

Why greed works for finding MSTs...

- For any spanning tree T , inserting an edge e not in T creates a cycle \rightarrow Removing any edge gives back a spanning tree \Rightarrow If e had a lower cost than removed edge, we get a lower cost spanning tree
- Idea: Create a spanning tree as follows:

1. Add an edge of minimum cost that doesn't create a cycle
2. Repeat Step 1 for $|V|-1$ edges

- This spanning tree has minimum cost because:
\Rightarrow if you can replace an edge with another edge of lower cost without creating a cycle, our algorithm would have picked it
- Two MST algorithms: Prim (1957) and Kruskal, Jr. (1956)
\Rightarrow Differ in how an edge of minimum cost is picked

Prim's Algorithm for Finding the MST

1. Starting from an empty tree, T, pick a vertex, $v 0$, at random and initialize: $V^{\prime}=\{v 0\}$ and $E^{\prime}=\{ \}$
2. Choose a vertex v not in V^{\prime} such that edge weight from v to a vertex in V^{\prime} is minimal (get greedy!)
3. Add v to V^{\prime} and the edge to E^{\prime} if no cycle is created
4. Repeat until all vertices have been added

Prim's Algorithm: Implemented and Analyzed

- Implementation details:

1. Initialize cost of each node to ∞ and mark it unknown
2. Initialize cost of one selected node S to 0 , with $\operatorname{Prev}[\mathrm{S}]=0$
3. While there are unknown nodes left in the graph
4. Select the unknown node N with the lowest cost
5. Mark N as known
6. For each unknown node A adjacent to N If cost of (N, A) < A's cost
A 's cost $=\operatorname{cost}$ of (N, A)
$\operatorname{Prev}[A]=N / /$ store preceding node

- This is almost identical to Dijkstra's algorithm!
- Run time is $\mathrm{O}\left(|V|^{2}\right)$ without heaps and $\mathrm{O}(|V| \log |V|+|E| \log$ $|V|)$ using binary heaps

Kruskal finds another greedy way to MST

- In 1956, J. B. Kruskal, Jr. found another way to find MSTs
- Main Idea: Select edges in order of increasing cost and accept an edge only if it does not cause a cycle
- Pseudocode for Kruskal's MST algorithm:
\Rightarrow Put all the vertices into single node trees by themselves
\Rightarrow Put all the edges in a priority queue with key $=$ edge cost
\Rightarrow Repeat until $|\mathrm{V}|-1$ edges have been accepted
- Extract cheapest edge

If it forms a cycle, ignore it
else accept the edge - it will join two existing trees and yield a larger tree
\Rightarrow Return the accepted edges (they form the spanning tree)

Kruskal's Algorithm in C

```
Forest Kruskal_MST( Graph g, int n, double **costs )
{
    Forest T;
                                    n=|V|
    Queue q;
    Edge e;
    T = ConsForest( g ); Initial Forest: single vertex trees
    q = BuildHeap( g, costs ); Priority Q of edges
        for(i=0;i<(n-1);i++) {
            do {
                e = DeleteMin( q );
            } while ( Cycle( e, T ) );
            AddEdge( T, e );
    }
    return T;
}

Kruskal's Algorithm in C
```

Forest Kruskal_MST(Graph g, int n, double **costs)
{
Forest T;
Queue q;
Edge e;
T = ConsForest(g);
q = BuildHeap(g, costs);
for(i=0;i<(n-1);i++) {
do {
e = DeleteMin(q);
} while (Cycle(e, T));
AddEdge(T, e);
}
return T;
}

Kruskal's Algorithm in C

```
Forest Kruskal_MST( Graph g, int n, double **costs )
{
    Forest T;
    Queue q;
    Edge e;
    T = ConsForest( g );
    q = BuildHeap( g, costs );
    for(i=0;i<(n-1);i++) {
            do {
                e = DeleteMin( q );
            } while ( Cycle( e, T ) );
            AddEdge( T, e );
    }
    return T; ... and add it to the forest!
}

Kruskal's Algorithm in C
```

Forest Kruskal_MST(Graph g, int n, double **costs)
{
Forest T;
Queue q;
Edge e;
T = ConsForest(g);
q = BuildHeap(g, costs);
for(i=0;i<(n-1);i++) {
do {
e = DeleteMin(q);
} while (Cycle(e, T));
AddEdge(T, e);
}
return T;
}

Hints for Detecting Cycles in Kruskal's Method

- Initially, you have n different elements (single vertex trees)
- After you have added some edges, you have fewer elements - several disconnected trees, each with a subset of vertices
- When do you get a cycle? If you add an edge (u, v) where both u and v are already in the same tree T_{i}, you get a cycle
\Rightarrow Therefore, to check for cycles, you only need to find out if u and v are in the same tree
\Rightarrow If not, then the edge can be added and we union vertices in u's tree with vertices in v's tree
- What is your favorite data structure for such operations?

Disjoint Set ADT in Kruskal's Algorithm

\checkmark Here's how the disjoint set ADT makes an appearance:
\Rightarrow In Kruskal's algorithm, connected vertices form equivalence classes (they are in the same tree)
*"Being connected" is the equivalence relation

- Initially, each vertex is in a class by itself
- As edges are added, more vertices become related and the equivalence classes grow
\uparrow Until finally all the vertices are in a single equivalence class

Union/Find in Kruskal's Algorithm

- Representatives
\Rightarrow One vertex in each class can be the representative of that class
\Rightarrow Vertices can be stored in up-tree data structures with roots = class representatives
- This is what we used for Union-Find
\rightarrow Detecting cycles is easy!
\Rightarrow For each edge (u,v) that you're going to add
- If Find(u) $==$ Find(v), then u and v are in the same class (same tree) and therefore the edge will form a cycle
- Otherwise, we accept the edge and do Union(u,v)

Kruskal's Algorithm in C

```
Forest Kruskal_MST( Graph g, int n, double **costs ) {
    Forest T;
    Queue q;
    Edge e;
    DisjSet S = InitializeSet( g );
    T = ConsForest( g );
    q = BuildHeap( g, costs );
    for(i=0;i<(n-1);i++) {
            do {
                e = DeleteMin( q ); // e = (u,v)
            } while ( (Find(u,S) == Find(v,S)) );
            AddEdge( T, e );
            Union(S, u, v);
    }
    return T; }

Kruskal in action

> \begin{tabular}{l}  All the vertices are in \\ single element trees \\ \hline \end{tabular}


> Each vertex is its own representative

Kruskal in action


The cheapest edge
is \(\mathrm{h}-\mathrm{g}\)
Add it to the forest,
joining \(h\) and \(g\) into a
2-element tree

Kruskal in action


Kruskal in action


Our forest now has 2 two-element trees and 5 single vertex ones

Kruskal in action
\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
The next cheapest edge \\
is \(g-f\)
\end{tabular} \\
\hline
\end{tabular}


Our forest now has 1 three-element tree, 1 two-element tree, and 4 single vertex ones

Kruskal in action


Our forest now has only 2 single vertex trees

Kruskal in action


Kruskal in action



Find \((\mathbf{g})\) is \(\mathbf{C}\)
Find( i ) is also C
g-i forms a cycle!

Ignore this edge

Kruskal in action


Kruskal in action

The next cheapest edge is \(\mathrm{h}-\mathrm{i}\)


Find(h) is C
Find( \(i\) is \(\mathbf{C}\)
h-i forms a cycle, so ignore it!

Kruskal in action

The next cheapest edge is a-h


Kruskal done!


But b-c forms a cycle


That's n-1 edges added - we now have a spanning tree!

\section*{Kruskal's Algorithm: Analysis}
```

Forest Kruskal_MST(Graph g, int n, double **costs) {
Forest T;
Queue q;
Edge e;
DisjSet S = InitializeSet(g); }\longrightarrow\textrm{T}=\textrm{COnsForest(g);
q = BuildHeap(g, costs); }\longrightarrow\textrm{O}(|E|
for(i=0;i<(n-1);i++) {

```

Worst case: do \{
\(\operatorname{DeleteMin}|E| \quad e=\operatorname{DeleteMin}(\mathrm{q}) ; / / e=(u, v)\) edges, each \(\}\) while ( (Find \((u, S)==F i n d(v, S))\) ) \(\mathrm{O}(\log |E|)\) AddEdge \((\mathrm{T}, \mathrm{e}) ; \mathrm{O}(1) \longrightarrow \mathrm{O}(1)\) amortized Union(S, u, v);
\}
return \(\mathrm{T} ; \quad\} \quad\) Total time \(=\mathrm{O}(|E| \log |E|)\)
R. Rao, CSE 373

\section*{Kruskal versus Prim}
- Worst case running time
\(\Rightarrow\) Prim: \(\mathrm{O}(|V| \log |V|+|E| \log |V|)\)
\(\Rightarrow\) Kruskal: \(\mathrm{O}(|E| \log |E|)=\mathrm{O}(|E| \log |V|)\) since \(|E|=\mathrm{O}\left(|V|^{2}\right)\)
- Kruskal usually runs much faster than \(\mathrm{O}(|E| \log |V|)\) in practice
\(\Rightarrow\) Not all edges need to be DeleteMin-ed typically
\(\Rightarrow\) The required \(|V|-1\) edges are usually found quickly
\(\Rightarrow\) So, Kruskal tends to be faster than Prim

\section*{It's Puzzle Time!}


\section*{It's Puzzle Time!}


Historical Puzzle: Seven Bridges of Königsberg


Want to cross all bridges but...
Can cross each bridge only once (High toll to cross twice?!)

A "Multigraph" for the Bridges of Königsberg


\section*{Euler Circuits and Tours}
- Euler tour: a path through a graph that visits each edge exactly once
- Euler circuit: an Euler tour that starts and ends at the same vertex
\(\downarrow\) Named after Leonhard Euler (1707-1783), who cracked this problem and founded graph theory in 1736
- Some observations for undirected graphs:
\(\Rightarrow\) An Euler circuit is only possible if the graph is connected and each vertex has even degree (= \# of edges on the vertex) [Why?]
\(\Rightarrow\) An Euler tour is only possible if the graph is connected and either all vertices have even degree or exactly two have odd degree [Why?]

\section*{Euler Circuit Problem}
\(\rightarrow\) Problem: Given an undirected graph \(G=(V, E)\), find an Euler circuit in G
- Note: Can check if one exists in linear time (how?)
- Given that an Euler circuit exists, how do we construct an Euler circuit for G?
- Hint: Think deep! We've discussed the answer in depth before...

\section*{Next Class:}

Constructing Euler circuits
The vast gulf between Euler and Hamiltonian circuits
The dreaded world of NP hardness
To Do:
Programming Assignment \#2 (Due in 6 days!!)
Finish reading chapter 9 (and have a great weekend!)```

