Lecture 24: From Dijkstra to Prim

- Today's Topics:
\Rightarrow Dijkstra's Shortest Path Algorithm
\Rightarrow Depth First Search
\Rightarrow Spanning Trees
\Rightarrow Minimum Spanning Trees
- Prim's Algorithm
\checkmark Covered in Chapter 9 in the textbook

Single Source, Shortest Path Problem

* Given a graph $\mathrm{G}=(V, E)$ and a "source" vertex s in V, find the minimum cost paths from s to every vertex in V

Dijkstra's Shortest Path Algorithm

1. Initialize the cost of each node to ∞
2. Initialize the cost of the source to 0
3. While there are unknown nodes left in the graph
4. Select the unknown node N with the lowest cost (greedy choice)
5. Mark N as known
6. For each node A adjacent to N If $(N$'s cost $+\operatorname{cost}$ of $(N, A))<$ A's cost
A 's cost $=N$'s cost $+\operatorname{cost}$ of (N, A)
$\operatorname{Prev}[A]=N / /$ store preceding node

(Prev allows paths to be reconstructed)

Dijkstra's Algorithm (greed in action)

Analysis of Dijkstra's Algorithm

- Main loop:

While there are unknown nodes left in the graph $\longleftarrow|V|$ times

1. Select the unknown node N with the lowest cost $\longleftarrow \mathrm{O}(|V|)$
2. Mark N as known
3. For each node A adjacent to $N \longleftarrow \mathrm{O}(|E|)$ total If (N 's cost $+\operatorname{cost}$ of $(N, A))<$ A's cost

$$
A \prime s \operatorname{cost}=N \prime s \operatorname{cost}+\operatorname{cost} \text { of }(N, A)
$$

Total time $=|V|(\mathrm{O}(|V|))+\mathrm{O}(|E|)=\mathrm{O}\left(|V|^{2}+|E|\right)$
Dense graph: $|E|=\Theta\left(|V|^{2}\right) \rightarrow$ Total time $=\mathrm{O}\left(|V|^{2}\right)=\mathrm{O}(|E|) \sqrt{ }$
Sparse graph: $|E|=\Theta(|V|) \rightarrow$ Total time $=\mathrm{O}\left(|V|^{2}\right)=\mathrm{O}\left(|E|^{2}\right) \chi$

> Quadratic! Can we do better?

Analysis of Dijkstra's Algorithm

Yes! Use a priority queue to store vertices with key $=\operatorname{cost}$
$|V|$ times:
Select the unknown node N with the lowest cost

Total run time $=?$

Analysis of Dijkstra's Algorithm

Yes! Use a priority queue to store vertices with key $=$ cost
$|V|$ times:
Select the unknown node N with the lowest cost

A 's cost $=N$'s cost $+\operatorname{cost}$ of (N, A)

Total run time $=\mathrm{O}(|V| \log |V|+|E| \log |V|)$

Does Dijkstra's Algorithm Always Work?

- Dijkstra's algorithm is an example of a greedy algorithm
- Greedy algorithms always make choices that currently seem the best
\Rightarrow Short-sighted - no consideration of long-term or global issues \Rightarrow Locally optimal does not always mean globally optimal
- In Dijkstra's case - choose the least cost node, but what if there is another path through other vertices that is cheaper?
- Can prove: Never happens if all edge weights are positive

The "Cloudy" Proof of Dijkstra's Correctness

If the path to G is the next shortest path, the path to P must be at least as long.
Therefore, any path through P to G cannot be shorter!

Inside the Cloud (Proof)

Everything inside the cloud has the correct shortest path
Proof is by induction on the \# of nodes in the cloud:
\Rightarrow Base case: Initial cloud is just the source with shortest path 0
\Rightarrow Inductive hypothesis: cloud of k-1 nodes all have shortest paths
\Rightarrow Inductive step: choose the least cost node $\mathrm{G} \rightarrow$ has to be the shortest path to G (previous slide). Add $\mathrm{k}^{\text {th }}$ node G to the cloud

Inside the Cloud (Proof)

Everything inside the cloud has the correct shortest path
Proof is by induction on the \# of nodes in the cloud:
\Rightarrow Base case: Initial cloud is just the source with shortest path 0
\Rightarrow Inductive hypothesis: cloud of $\mathrm{k}-1$ nodes all have shortest paths
\Rightarrow Inductive step: choose the least cost node $\mathrm{G} \rightarrow$ has to be the shortest path to G (previous slide). Add $\mathrm{k}^{\text {th }}$ node G to the cloud

But waitaminute!! What about negative weights??

Negative Weights: Dijkstra's Achilles Heel

Dijkstra: $\mathrm{C} \rightarrow \mathrm{D}($ cost $=-5)$
Least cost path:
$\mathrm{C} \rightarrow \mathrm{E} \rightarrow \mathrm{D}(\operatorname{cost}=-8)$

Negative cycles: What's the shortest path from A to E ? (or to B, C, or D, for that matter)

Depth First Search (DFS)

- We used Breadth First Search for finding shortest paths in an unweighted graph
\Rightarrow Use a queue to explore neighbors of source vertex, neighbors of each neighbor, and so on: 1 edge away, two edges away, etc.
- Its counterpart: Depth First Search
\Rightarrow A second way to explore all nodes in a graph
- DFS searches down one path as deep as possible
\Rightarrow When no new nodes available, it backtracks
\Rightarrow When backtracking, we explore side-paths that weren't taken
\uparrow DFS allows an easy recursive implementation \Rightarrow So, DFS uses a stack while BFS uses a queue

DFS Pseudocode

- Pseudocode for DFS:

DFS (v)
If v is unvisited mark v as visited print v (or process v) for each edge (v, w) DFS (w)

- Works for directed or undirected graphs
\star Running time $=\mathbf{O}(|\boldsymbol{V}|+|\boldsymbol{E}|)$

What about DFS on this graph?

- What happens when you do DFS("142")?

We get a "spanning" tree...

DFS and BFS may give different trees...

DFS(C)
$\xrightarrow{\text { BFS(C) }}$

Spanning Tree Definition

- Spanning tree: a subset of edges from a connected graph that:
\Rightarrow touches all vertices in the graph (spans the graph)
\Rightarrow forms a tree (is connected and contains no cycles)

- Minimum spanning tree: the spanning tree with the least total edge cost

Minimum Spanning Tree (MST)

We are given a weighted, undirected graph $G=(V, E)$, with weight function $w: E \rightarrow \mathbf{R}$ mapping edges to real valued weights
Problem: Find the minimum cost spanning tree

Why minimum spanning trees?

- Lots of applications
- Minimize length of gas pipelines between cities
- Find cheapest way to wire a house (with minimum cable)
- Find a way to connect various routers on a network that minimizes total delay
- Etc...

Prim's Algorithm for Finding the MST

1. Starting from an empty
tree, T, pick a vertex, $v 0$, at random and initialize: $V^{\prime}=\{v 0\}$ and $E^{\prime}=\{ \}$

Prim's Algorithm for Finding the MST

1. Starting from an empty tree, T, pick a vertex, $v 0$, at random and initialize: $V^{\prime}=\{v 0\}$ and $E^{\prime}=\{ \}$
2. Choose a vertex v not in V^{\prime} such that edge weight from v to a vertex in V^{\prime} is minimal (greedy again!)

Prim's Algorithm for Finding the MST

1. Starting from an empty tree, T, pick a vertex, $v 0$, at random and initialize: $V^{\prime}=\{v 0\}$ and $E^{\prime}=\{ \}$
2. Choose a vertex v not in V^{\prime} such that edge weight from v to a vertex in V^{\prime} is minimal (greedy again!)
3. Add v to V^{\prime} and the edge to E^{\prime} if no cycle is created

Prim's Algorithm for Finding the MST

1. Starting from an empty tree, T, pick a vertex, $v 0$, at random and initialize: $V^{\prime}=\{v 0\}$ and $E^{\prime}=\{ \}$
2. Choose a vertex v not in V^{\prime} such that edge weight from v to a vertex in V^{\prime} is minimal (greedy again!)
3. Add v to V^{\prime} and the edge to E^{\prime} if no cycle is created
4. Repeat until all vertices have been added

Prim's Algorithm for Finding the MST

1. Starting from an empty tree, T, pick a vertex, $v 0$, at random and initialize: $V^{\prime}=\{v 0\}$ and $E^{\prime}=\{ \}$
2. Choose a vertex v not in V^{\prime} such that edge weight from v to a vertex in V^{\prime} is minimal (greedy again!)
3. Add v to V^{\prime} and the edge to E^{\prime} if no cycle is created
4. Repeat until all vertices have been added

Prim's Algorithm for Finding the MST

1. Starting from an empty tree, T, pick a vertex, $v 0$, at random and initialize: $V^{\prime}=\{v 0\}$ and $E^{\prime}=\{ \}$
2. Choose a vertex v not in V^{\prime} such that edge weight from v to a vertex in V^{\prime} is minimal (greedy again!)
3. Add v to V^{\prime} and the edge to E^{\prime} if no cycle is created
4. Repeat until all vertices have been added

Prim's Algorithm for Finding the MST

1. Starting from an empty tree, T, pick a vertex, $v 0$, at random and initialize: $V^{\prime}=\{v 0\}$ and $E^{\prime}=\{ \}$
2. Choose a vertex v not in V^{\prime} such that edge weight from v to a vertex in V^{\prime} is minimal (greedy again!)
3. Add v to V^{\prime} and the edge to E^{\prime} if no cycle is created
4. Repeat until all vertices have been added

Prim's Algorithm for Finding the MST

Done!

$$
\begin{aligned}
\text { Total cost } & =1+3+4+1+1 \\
& =10
\end{aligned}
$$

