Lecture 23: Topo-Sort and Dijkstra's Greedy Idea

- What's the Buzz? Homework \#5 is up on the web \Rightarrow Go to "Assignments" link on class web page
\Rightarrow This is a programming assignment on graphs
Due June 1 (last day of class)
- Today's Topics:
\Rightarrow Topological Sort (Take 2): Gunning for linear time...
\Rightarrow Finding Shortest Paths
- Breadth-First Search

Dijkstra's Method: Greed is good!

- Covered in Chapter 9 in the textbook
R. Rao, CSE 373

Some slides based on: CSE 326 by S. Wolfman, 2000

Example Application of Topological Sort

Recall from Last Time: Topological Sort

Topological sorting problem: given digraph $G=(V, E)$, output all the vertices in V such that no vertex is output before any other vertex with an edge to it

R. Rao, CSE 373

Any linear ordering in which all the arrows go to the right
(F) is a valid solution

Topo-Sort Algorithm \#1 (from Last Time)

1. Store each vertex's InDegree (\# of incoming edges) in an array
2. While there are vertices remaining:
\Rightarrow Find a vertex with In-Degree zero and output it
\Rightarrow Reduce In-Degree of all vertices adjacent to it by 1
\Rightarrow Mark this vertex (InDegree $=-1$)
R. Rao, CSE 373

Topological Sort Algorithm \#1: Analysis
For input graph $\mathrm{G}=(V, E)$, Run Time $=$?
Break down into total time to:
\rightarrow Initialize In-Degree array: $\mathrm{O}(|E|)$
\rightarrow Find vertex with in-degree $0:|V|$ vertices, each takes
$\mathrm{O}(|V|)$ to search In-Degree array. Total time $=\mathrm{O}\left(|V|^{2}\right)$
\rightarrow Reduce In-Degree of all vertices adjacent to a vertex: $\mathrm{O}(|E|)$
\rightarrow Output and mark vertex: $\mathrm{O}(|V|)$
Total time $=\mathbf{O}\left(|V|^{2}+|E|\right) \rightarrow$ Quadratic time:
Can we do better than quadratic time?
Problem: Need a faster way to find vertices with in-degree 0 ?
R. Rao, CSE 373

Topological Sort (Take 2)
After each vertex is output, when updating In-Degree array, enqueue any vertex whose In-Degree has become zero

Topological Sort (Take 2)

Key idea: Initialize and maintain a queue (or stack) of vertices with In-Degree 0

Queue A F

(F)

Topological Sort Algorithm \#2

1. Store each vertex's In-Degree in an array
2. Initialize a queue with all in-degree zero vertices
3. While there are vertices remaining in the queue:
\Rightarrow Dequeue and output a vertex
\Rightarrow Reduce In-Degree of all vertices adjacent to it by 1
\Rightarrow Enqueue any of these vertices whose In-Degree became zero

Sort this digraph!
R. Rao, CSE 373

Topological Sort Algorithm \#2: Analysis
For input graph $\mathrm{G}=(V, E)$, Run Time $=$?
Break down into total time to:
\rightarrow Initialize In-Degree array: $\mathrm{O}(|E|)$
\rightarrow Initialize Queue with In-Degree 0 vertices: $\mathrm{O}(|V|)$
\rightarrow Dequeue and output vertex: $|V|$ vertices, each takes only $\mathrm{O}(1)$ to dequeue and output. Total time $=\mathrm{O}(|V|)$
\rightarrow Reduce In-Degree of all vertices adjacent to a vertex and Enqueue any In-Degree 0 vertices: $\mathrm{O}(|E|)$

Total time $=\mathbf{O}(|V|+|E|) \quad \rightarrow$ Linear running time!
Heads-up: You will be implementing this algorithm in HW \#5
R. Rao, CSE 373

Simple Paths and Cycles

- A simple path repeats no vertices (except the $1^{\text {st }}$ can be the last):
$\Rightarrow p=\{$ Seattle, Salt Lake City, San Francisco, Dallas $\}$ $\Rightarrow p=\{$ Seattle, Salt Lake City, Dallas, San Francisco, Seattle $\}$
- A cycle is a path that starts and ends at the same node: $\Rightarrow p=\{\underline{\text { Seattle, Salt Lake City, Dallas, San Francisco, Seattle }\}}$
- A simple cycle is a cycle that repeats no vertices except that the first vertex is also the last
- A directed graph with no cycles is called a DAG (directed acyclic graph) E.g. All trees are DAGs \Rightarrow A graph with cycles is often a DRAG...(okay, that's a bad joke)

Path Length and Cost

- Path length: the number of edges in the path
- Path cost: the sum of the costs of each edge
\Rightarrow Path length is simply the unweighted path cost (edge weight $=1$)

Single Source, Shortest Path Problems

* Given a graph $\mathrm{G}=(V, E)$ and a "source" vertex s in V, find the minimum cost paths from s to every vertex in V
- Many variations: \Rightarrow unweighted vs. weighted
\Rightarrow cyclic vs. acyclic
\Rightarrow positive weights only vs. negative weights allowed
\Rightarrow multiple weight types to optimize
\Rightarrow Etc.
- We will look at only a couple of these.. \Rightarrow See text if you are interested in the others
R. Rao, CSE 373

Unweighted Shortest Paths Problem
Problem: Given a "source" vertex s in an unweighted graph G $=$ (V, E), find the shortest path from s to all vertices in G

Find the shortest path from C to: A \quad B \quad C \quad D \quad E \quad F \quad G \quad H
R. Rao, CSE 373

15

Why study shortest path problems?

- Plenty of applications
- Traveling on a budget: What is the cheapest multiple-stop airline schedule from Seattle to city X ?
\rightarrow Optimizing routing of packets on the internet:
\Rightarrow Vertices are routers and edges are network links with different delays \Rightarrow What is the routing path with smallest total delay?
\rightarrow Hassle-free commuting: Finding what highways and roads to take to minimize total delay due to traffic
\uparrow Finding the fastest way to get to coffee vendors on campus from your classrooms

Solution based on Breadth-First Search

- Basic Idea: Starting at node s, find vertices that can be reached using $0,1,2,3, \ldots, \mathrm{~N}-1$ edges (works even for cyclic graphs!)

On-board
example:
Find the shortest path from C to: A
R. Rao, CSE 373

Breadth-First Search (BFS) Algorithm

- Uses a queue to track vertices that need to be expanded
- Pseudocode (source vertex is s):

1. Dist [s] $=0$
2. Enqueue (s)
3. While queue is not empty
4. $x=$ dequeue
5. For each vertex Y adjacent to X and not previously visited

- Dist[Y] = Dist[X] + 1
- $\operatorname{Prev}[\mathrm{Y}]=\mathrm{X}$
- Enqueue Y
- Running time (same as topological sort) $=\mathbf{O}(|\boldsymbol{V}|+|E|)$ (why?)
R. Rao, CSE 373

17

Dijkstra to the rescue...

- Legendary figure in computer science; now a professor at University of Texas at Austin.
- Some gossip about D. from CSE 326 (2000)...
- Rumor \#1: Supports teaching introductory computer courses without computers (pencil and paper programming)
- Rumor \#2: Supposedly wouldn't (until recently) read his email; so, his staff had to print out his e-mails and put them in his mailbox

That was easy...what if edges have weights?
\uparrow BFS does not work anymore - minimum cost path may have additional hops

Shortest path from

C to A:
BFS: $\mathrm{C} \rightarrow \mathrm{A}$
$(\operatorname{cost}=9)$
Minimum Cost
Path $=\mathrm{C} \rightarrow \mathrm{E} \rightarrow \mathrm{D} \rightarrow \mathrm{A}$
$(\operatorname{cost}=8)$

Dijkstra's Algorithm for Weighted Shortest Path

- Classic algorithm for solving shortest path in weighted graphs (without negative weights)
- A greedy algorithm (irrevocably makes decisions without considering future consequences)
- Basic Idea:
\Rightarrow Similar to BFS
- Each vertex has a cost for path from source
- Vertices to be expanded have least cost seen so far
- Greedy choice - always expand least cost vertex
- But unlike BFS, a vertex already visited may be updated if a better path to it is found

