Recall from Last Time: Topological Sort

Topological sorting problem: given digraph $G = (V, E)$, output all the vertices in V such that no vertex is output before any other vertex with an edge to it

Any linear ordering in which all the arrows go to the right is a valid solution

Topo-Sort Algorithm #1 (from Last Time)

1. Store each vertex’s In-Degree (# of incoming edges) in an array
2. While there are vertices remaining:
 - Find a vertex with In-Degree zero and output it
 - Reduce In-Degree of all vertices adjacent to it by 1
 - Mark this vertex (In-Degree = -1)

Example Application of Topological Sort

Problem: Find an order in which all these courses can be taken.
Example: $142 \rightarrow 143 \rightarrow 378 \rightarrow 326 \rightarrow 421 \rightarrow 401$

To take a course, all its prerequisites need to be taken first
Topological Sort Algorithm #1: Analysis

For input graph $G = (V,E)$, Run Time =

Break down into total time to:

\rightarrow Initialize In-Degree array: $O(|E|)$

\rightarrow Find vertex with in-degree 0: $|V|$ vertices, each takes $O(|V|)$ to search In-Degree array. Total time = $O(|V|^2)$

\rightarrow Reduce In-Degree of all vertices adjacent to a vertex: $O(|E|)$

Output and mark vertex: $O(|V|)$

Total time = $O(|V|^2 + |E|)$ \rightarrow Quadratic time!

Can we do better than quadratic time?

Problem: Need a faster way to find vertices with in-degree 0?

Topological Sort (Take 2)

After each vertex is output, when updating In-Degree array, enqueue any vertex whose In-Degree has become zero

Topological Sort Algorithm #2

1. Store each vertex’s In-Degree in an array
2. Initialize a queue with all in-degree zero vertices
3. While there are vertices remaining in the queue:
 \rightarrow Dequeue and output a vertex
 \rightarrow Reduce In-Degree of all vertices adjacent to it by 1
 \rightarrow Enqueue any of these vertices whose In-Degree became zero

Sort this digraph!
Topological Sort Algorithm #2: Analysis
For input graph $G = (V, E)$, Run Time = ?

Break down into total time to:
- Initialize In-Degree array: $O(|E|)$
- Initialize Queue with In-Degree 0 vertices: $O(|V|)$
- Dequeue and output vertex: $|V|$ vertices, each takes only $O(1)$ to dequeue and output. Total time = $O(|V|)$
- Reduce In-Degree of all vertices adjacent to a vertex and Enqueue any In-Degree 0 vertices: $O(|E|)$

Total time = $O(|V| + |E|)$ \(\rightarrow\) Linear running time!

Heads-up: You will be implementing this algorithm in HW #5

Simple Paths and Cycles
- A simple path repeats no vertices (except the 1st can be the last):
 \(p = \{\text{Seattle, Salt Lake City, San Francisco, Dallas}\}\)
 \(p = \{\text{Seattle, Salt Lake City, Dallas, San Francisco, Seattle}\}\)
- A cycle is a path that starts and ends at the same node:
 \(p = \{\text{Seattle, Salt Lake City, Dallas, San Francisco, Seattle}\}\)
- A simple cycle is a cycle that repeats no vertices except that the first vertex is also the last
- A directed graph with no cycles is called a DAG (directed acyclic graph) E.g. All trees are DAGs
 \(A\ graph\ with\ cycles\ is\ often\ a\ DRAG...\(\text{okay,}\ that's\ a\ bad\ joke}\)

Paths
- Recall definition of a path in a tree – same for graphs
 - A path is a list of vertices \(\{v_1, v_2, ..., v_n\}\) such that \((v_i, v_{i+1})\) is in \(E\) for all \(0 \leq i < n\).

Example of a path:
\(p = \{\text{Seattle, Salt Lake City, Dallas, San Francisco, Seattle}\}\)

Path Length and Cost
- Path length: the number of edges in the path
 \(p = \{\text{Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle}\}\)
- Path cost: the sum of the costs of each edge
 \(\text{Path length is simply the unweighted path cost (edge weight = 1)}\)

Seattle
San Francisco
Dallas
Salt Lake City
Chicago

\(\text{Example of a path:} \)
\(\text{length}(p) = 5\)
\(\text{cost}(p) = 11.5\)
Single Source, Shortest Path Problems

✦ Given a graph $G = (V, E)$ and a “source” vertex s in V, find the minimum cost paths from s to every vertex in V

✦ Many variations:
 - unweighted vs. weighted
 - cyclic vs. acyclic
 - positive weights only vs. negative weights allowed
 - multiple weight types to optimize
 - Etc.

✦ We will look at only a couple of these…
 - See text if you are interested in the others

Unweighted Shortest Paths Problem

Problem: Given a “source” vertex s in an unweighted graph $G = (V, E)$, find the shortest path from s to all vertices in G

Find the shortest path from C to: $A \ B \ C \ D \ E \ F \ G \ H$

Why study shortest path problems?

✦ Plenty of applications

✦ Traveling on a budget: What is the cheapest multiple-stop airline schedule from Seattle to city X?

✦ Optimizing routing of packets on the internet:
 - Vertices are routers and edges are network links with different delays
 - What is the routing path with smallest total delay?

✦ Hassle-free commuting: Finding what highways and roads to take to minimize total delay due to traffic

✦ Finding the fastest way to get to coffee vendors on campus from your classrooms

Solution based on Breadth-First Search

✦ Basic Idea: Starting at node s, find vertices that can be reached using 0, 1, 2, 3, …, N-1 edges (works even for cyclic graphs!)

On-board example:
Find the shortest path from C to: $A \ B \ C \ D \ E \ F \ G \ H$
Breadth-First Search (BFS) Algorithm

✦ Uses a queue to track vertices that need to be expanded
✦ Pseudocode (source vertex is s):
 1. $\text{Dist}[s] = 0$
 2. Enqueue(s)
 3. While queue is not empty
 1. $X = \text{dequeue}$
 2. For each vertex Y adjacent to X and not previously visited
 1. $\text{Dist}[Y] = \text{Dist}[X] + 1$
 2. $\text{Prev}[Y] = X$
 3. Enqueue Y
✦ Running time (same as topological sort) = $O(|V| + |E|)$ (why?)

Dijkstra to the rescue…

✦ Legendary figure in computer science; now a professor at University of Texas at Austin.
✦ Some gossip about D. from CSE 326 (2000)…
✦ Rumor #1: Supports teaching introductory computer courses without computers (pencil and paper programming).
✦ Rumor #2: Supposedly wouldn’t (until recently) read his e-mail; so, his staff had to print out his e-mails and put them in his mailbox.

That was easy…what if edges have weights?

✦ BFS does not work anymore – minimum cost path may have additional hops

Shortest path from C to A:
BFS: C→A
(cost = 9)
Minimum Cost
Path = C→E→D→A
(cost = 8)

Dijkstra’s Algorithm for Weighted Shortest Path

✦ Classic algorithm for solving shortest path in weighted graphs (without negative weights)
✦ A greedy algorithm (irrevocably makes decisions without considering future consequences)
✦ Basic Idea:
 ✔ Similar to BFS
 ✦ Each vertex has a cost for path from source
 ✦ Vertices to be expanded have least cost seen so far
 ✔ Greedy choice – always expand least cost vertex
 ✦ But unlike BFS, a vertex already visited may be updated if a better path to it is found
Pseudocode for Dijkstra’s Algorithm

1. Initialize the cost of each node to ∞
2. Initialize the cost of the source to 0
3. While there are unknown nodes left in the graph
 1. Select the unknown node N with the lowest cost
 2. Mark N as known
 3. For each node A adjacent to N
 If (N’s cost + cost of (N, A)) < A’s cost
 A’s cost = N’s cost + cost of (N, A)
 Prev[A] = N //store preceding node

Dijkstra’s Algorithm (greed in action)

Work through this example...

<table>
<thead>
<tr>
<th>vertex</th>
<th>known</th>
<th>cost</th>
<th>Prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Next Class:
Does Dijkstra’s method always work?
How fast does it run?

To Do:
Start Programming Assignment #2
(Don’t wait until the last few days!!!)
Continue reading and enjoying chapter 9