
1R. Rao, CSE 373

Lecture 23: Topo-Sort and Dijkstra’s Greedy Idea

✦ What’s the Buzz? Homework #5 is up on the web
➭ Go to “Assignments” link on class web page
➭ This is a programming assignment on graphs

➧ Due June 1 (last day of class)

✦ Today’s Topics:
➭ Topological Sort (Take 2): Gunning for linear time…
➭ Finding Shortest Paths

➧ Breadth-First Search
➧ Dijkstra’s Method: Greed is good!

✦ Covered in Chapter 9 in the textbook

Some slides based on: CSE 326 by S. Wolfman, 2000

2R. Rao, CSE 373

Recall from Last Time: Topological Sort

Topological sorting problem: given digraph G = (V, E) ,
output all the vertices in V such that no vertex is output
before any other vertex with an edge to it

A

B
C

F

D E EA DFB C

Any linear ordering in which
all the arrows go to the right
is a valid solution

3R. Rao, CSE 373

Example Application of Topological Sort

321143

142

322

326

341370

378

401

421

Problem: Find an order in
which all these courses can
be taken.
Example: 142 ! 143 ! 378
! 370 ! 321 ! 341 ! 322
! 326 ! 421 ! 401 To take a course, all its prerequisites

need to be taken first

4R. Rao, CSE 373

Topo-Sort Algorithm #1 (from Last Time)

1. Store each vertex’s In-
Degree (# of incoming
edges) in an array

2. While there are vertices
remaining:
➭ Find a vertex with

In-Degree zero and
output it

➭ Reduce In-Degree of
all vertices adjacent
to it by 1

➭ Mark this vertex (In-
Degree = -1)

B D

E

ED

C

A

B

C

D

E

F

0

1

0

2

2

1

In-Degree
array

Adjacency
list

A

B C
F

D E

5R. Rao, CSE 373

For input graph G = (V,E), Run Time = ?
Break down into total time to:
! Initialize In-Degree array: O(|E|)
! Find vertex with in-degree 0: |V| vertices, each takes

O(|V|) to search In-Degree array. Total time = O(|V|2)
! Reduce In-Degree of all vertices adjacent to a vertex: O(|E|)
! Output and mark vertex: O(|V|)

Total time = O(|V|2 + |E|) !!!! Quadratic time!

Can we do better than quadratic time?

Problem: Need a faster way to find vertices with in-degree 0?

Topological Sort Algorithm #1: Analysis

6R. Rao, CSE 373

Key idea: Initialize and maintain a queue (or stack)
of vertices with In-Degree 0

A

Topological Sort (Take 2)

Queue

B D

E

ED

C

A

B

C

D

E

F

0

1

0

2

2

1

In-Degree
array

Adjacency
list

F

A

B C
F

D E

7R. Rao, CSE 373

After each vertex is output, when updating In-Degree array,
enqueue any vertex whose In-Degree has become zero

A

Topological Sort (Take 2)

Queue

B D

E

ED

C

A

B

C

D

E

F

0

0

0

1

2

1

In-Degree
array

Adjacency
list

F

Output

B
dequeue

enqueue

A

B C
F

D E

8R. Rao, CSE 373

Topological Sort Algorithm #2

1. Store each vertex’s In-Degree in an array

2. Initialize a queue with all in-degree zero vertices

3. While there are vertices remaining in the queue:
➭ Dequeue and output a vertex
➭ Reduce In-Degree of all vertices adjacent to it by 1
➭ Enqueue any of these vertices whose In-Degree became

zero

Sort this digraph!

A

B C
F

D E

9R. Rao, CSE 373

For input graph G = (V,E), Run Time = ?
Break down into total time to:
! Initialize In-Degree array: O(|E|)
! Initialize Queue with In-Degree 0 vertices: O(|V|)
! Dequeue and output vertex: |V| vertices, each takes only

O(1) to dequeue and output. Total time = O(|V|)
! Reduce In-Degree of all vertices adjacent to a vertex and

Enqueue any In-Degree 0 vertices: O(|E|)

Total time = O(|V| + |E|) !!!! Linear running time!

Heads-up: You will be implementing this algorithm in HW #5

Topological Sort Algorithm #2: Analysis

10R. Rao, CSE 373

Paths

✦ Recall definition of a path in a tree – same for graphs

✦ A path is a list of vertices {v1, v2, …, vn} such that
(vi, vi+1) is in E for all 0 ≤≤≤≤ i < n.

Seattle

San Francisco

Dallas

Chicago

Salt Lake City

Example of a path:

p = {Seattle, Salt
Lake City,
Chicago, Dallas,
San Francisco,
Seattle}

11R. Rao, CSE 373

Simple Paths and Cycles

✦ A simple path repeats no vertices (except the 1st can be the
last):
➭ p = {Seattle, Salt Lake City, San Francisco, Dallas}
➭ p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}

✦ A cycle is a path that starts and ends at the same node:
➭ p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}

✦ A simple cycle is a cycle that repeats no vertices except that
the first vertex is also the last

✦ A directed graph with no cycles is called a DAG (directed
acyclic graph) E.g. All trees are DAGs
➭ A graph with cycles is often a DRAG…(okay, that’s a bad joke)

12R. Rao, CSE 373

Path Length and Cost

✦ Path length: the number of edges in the path

✦ Path cost: the sum of the costs of each edge
➭ Path length is simply the unweighted path cost (edge weight = 1)

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

3.5

2 2

2.5

3

2
2.5

2.5length(p) = 5

cost(p) = 11.5

13R. Rao, CSE 373

Single Source, Shortest Path Problems

✦ Given a graph G = (V, E) and a “source” vertex s in V, find
the minimum cost paths from s to every vertex in V

✦ Many variations:
➭ unweighted vs. weighted
➭ cyclic vs. acyclic
➭ positive weights only vs. negative weights allowed
➭ multiple weight types to optimize
➭ Etc.

✦ We will look at only a couple of these…
➭ See text if you are interested in the others

14R. Rao, CSE 373

Why study shortest path problems?

✦ Plenty of applications

✦ Traveling on a budget: What is the cheapest multiple-stop
airline schedule from Seattle to city X?

✦ Optimizing routing of packets on the internet:
➭ Vertices are routers and edges are network links with different delays
➭ What is the routing path with smallest total delay?

✦ Hassle-free commuting: Finding what highways and roads to
take to minimize total delay due to traffic

✦ Finding the fastest way to get to coffee vendors on campus
from your classrooms

15R. Rao, CSE 373

Unweighted Shortest Paths Problem

Problem: Given a “source” vertex s in an unweighted graph G =
(V,E), find the shortest path from s to all vertices in G

A

C

B

D

F H

G

E

Find the shortest path from C to: A B C D E F G H

Source

16R. Rao, CSE 373

Solution based on Breadth-First Search

✦ Basic Idea: Starting at node s, find vertices that can be
reached using 0, 1, 2, 3, …, N-1 edges (works even for
cyclic graphs!)

Find the shortest path from C to: A B C D E F G H

On-board
example:

A

C

B

D

F H

G

E

17R. Rao, CSE 373

Breadth-First Search (BFS) Algorithm

✦ Uses a queue to track vertices that need to be expanded

✦ Pseudocode (source vertex is s):
1. Dist[s] = 0
2. Enqueue(s)
3. While queue is not empty

1. X = dequeue
2. For each vertex Y adjacent to X and not

previously visited
� Dist[Y] = Dist[X] + 1
� Prev[Y] = X
� Enqueue Y

✦ Running time (same as topological sort) = O(|V| + |E|) (why?)

18R. Rao, CSE 373

That was easy…what if edges have weights?

✦ BFS does not work anymore – minimum cost path may have
additional hops

A

C

B

D

F H

G

E

2 3

2
1

1

4

2

1
1

93

8

3

Shortest path from
C to A:
BFS: C!A
(cost = 9)
Minimum Cost
Path = C!E!D!A
(cost = 8)

19R. Rao, CSE 373

Dijkstra to the rescue…

✦ Legendary figure in computer science; now a professor at
University of Texas at Austin.

✦ Some gossip about D. from CSE 326 (2000)…

✦ Rumor #1: Supports teaching introductory computer courses
without computers (pencil and paper programming).

✦ Rumor #2: Supposedly wouldn’t (until recently) read his e-
mail; so, his staff had to print out his e-mails and put them
in his mailbox.

20R. Rao, CSE 373

Dijkstra’s Algorithm for Weighted Shortest Path

✦ Classic algorithm for solving shortest path in weighted
graphs (without negative weights)

✦ A greedy algorithm (irrevocably makes decisions without
considering future consequences)

✦ Basic Idea:
➭ Similar to BFS

➧ Each vertex has a cost for path from source
➧ Vertices to be expanded have least cost seen so far

� Greedy choice – always expand least cost vertex
➧ But unlike BFS, a vertex already visited may be updated if

a better path to it is found

21R. Rao, CSE 373

Pseudocode for Dijkstra’s Algorithm

1. Initialize the cost of each node to ∞

2. Initialize the cost of the source to 0

3. While there are unknown nodes left in the
graph
1. Select the unknown node N with the

lowest cost
2. Mark N as known
3. For each node A adjacent to N

If (N’s cost + cost of (N, A)) < A’s cost
A’s cost = N’s cost + cost of (N, A)
Prev[A] = N //store preceding node

A

C

B

D

E

2

2

1
1

9
3

8

3

(Prev allows
paths to be
reconstructed)

22R. Rao, CSE 373

Dijkstra’s Algorithm (greed in action)

A

C

B

D

E

2

2

1
1

9
3

8

3

Work through this example…

vertex known cost

A

B

C

D

E

Prev

23R. Rao, CSE 373

Next Class:

Does Dijkstra’s method always work?

How fast does it run?

To Do:

Start Programming Assignment #2

(Don’t wait until the last few days!!!)

Continue reading and enjoying chapter 9

