Recall from Last Time: Topological Sort

Topological sorting problem: given digraph $G = (V, E)$, output all the vertices in V such that no vertex is output before any other vertex with an edge to it

Any linear ordering in which all the arrows go to the right is a valid solution
Example Application of Topological Sort

Problem: Find an order in which all these courses can be taken.
Example: 142 → 143 → 378 → 370 → 321 → 341 → 322 → 326 → 421 → 401
To take a course, all its prerequisites need to be taken first

Topo-Sort Algorithm #1 (from Last Time)

1. Store each vertex’s In-Degree (# of incoming edges) in an array
2. While there are vertices remaining:
 - Find a vertex with In-Degree zero and output it
 - Reduce In-Degree of all vertices adjacent to it by 1
 - Mark this vertex (In-Degree = -1)
Topological Sort Algorithm #1: Analysis

For input graph $G = (V,E)$, Run Time = ?

Break down into total time to:

- Initialize In-Degree array: $O(|E|)$
- Find vertex with in-degree 0: $|V|$ vertices, each takes $O(|V|)$ to search In-Degree array. Total time = $O(|V|^2)$
- Reduce In-Degree of all vertices adjacent to a vertex: $O(|E|)$
- Output and mark vertex: $O(|V|)$

Total time = $O(|V|^2 + |E|) \rightarrow Quadratic time!

Can we do better than quadratic time?

Problem: Need a faster way to find vertices with in-degree 0?

Topological Sort (Take 2)

Key idea: Initialize and maintain a *queue (or stack)* of vertices with In-Degree 0

Queue

```
A F
```

Adjacency list

```
0: A, F
1: B, C
2: D, E
```

In-Degree array

```
0: F
1: C
2: D, E
```
Topological Sort (Take 2)

After each vertex is output, when updating In-Degree array, enqueue any vertex whose In-Degree has become zero.

Topological Sort Algorithm #2

1. Store each vertex’s In-Degree in an array
2. Initialize a queue with all in-degree zero vertices
3. While there are vertices remaining in the queue:
 - Dequeue and output a vertex
 - Reduce In-Degree of all vertices adjacent to it by 1
 - Enqueue any of these vertices whose In-Degree became zero

Sort this digraph!
Topological Sort Algorithm #2: Analysis

For input graph $G = (V,E)$, Run Time = ?

Break down into total time to:
- Initialize In-Degree array: $O(|E|)$
- Initialize Queue with In-Degree 0 vertices: $O(|V|)$
- Dequeue and output vertex: $|V|$ vertices, each takes only $O(1)$ to dequeue and output. Total time = $O(|V|)$
- Reduce In-Degree of all vertices adjacent to a vertex and Enqueue any In-Degree 0 vertices: $O(|E|)$

Total time = $O(|V| + |E|)$ \rightarrow *Linear running time!*

Heads-up: You will be implementing this algorithm in HW #5

 Paths

- Recall definition of a path in a tree – same for graphs
- A *path* is a list of vertices $\{v_1, v_2, \ldots, v_n\}$ such that (v_i, v_{i+1}) is in E for all $0 \leq i < n$.

Example of a path:

$p = \{Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle\}$
Simple Paths and Cycles

- A **simple path** repeats no vertices (except the 1st can be the last):
 - p = {Seattle, Salt Lake City, San Francisco, Dallas}
 - p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}

- A **cycle** is a path that starts and ends at the same node:
 - p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}

- A **simple cycle** is a cycle that repeats no vertices except that the first vertex is also the last

- A directed graph with no cycles is called a **DAG** (directed acyclic graph) E.g. All trees are DAGs
 - A graph with cycles is often a **DRAG**…(okay, that’s a bad joke)

Path Length and Cost

- **Path length**: the number of edges in the path
- **Path cost**: the sum of the costs of each edge
 - Path length is simply the unweighted path cost (edge weight = 1)

![Graph diagram](image)
Single Source, Shortest Path Problems

✦ Given a graph $G = (V, E)$ and a “source” vertex s in V, find the minimum cost paths from s to every vertex in V

✦ Many variations:
 ➤ unweighted vs. weighted
 ➤ cyclic vs. acyclic
 ➤ positive weights only vs. negative weights allowed
 ➤ multiple weight types to optimize
 ➤ Etc.

✦ We will look at only a couple of these…
 ➤ See text if you are interested in the others

Why study shortest path problems?

✦ Plenty of applications

✦ Traveling on a budget: What is the cheapest multiple-stop airline schedule from Seattle to city X?

✦ Optimizing routing of packets on the internet:
 ➤ Vertices are routers and edges are network links with different delays
 ➤ What is the routing path with smallest total delay?

✦ Hassle-free commuting: Finding what highways and roads to take to minimize total delay due to traffic

✦ Finding the fastest way to get to coffee vendors on campus from your classrooms
Unweighted Shortest Paths Problem

Problem: Given a “source” vertex \(s \) in an unweighted graph \(G = (V,E) \), find the shortest path from \(s \) to all vertices in \(G \)

Solution based on Breadth-First Search

✦ Basic Idea: Starting at node \(s \), find vertices that can be reached using 0, 1, 2, 3, \ldots, \(N-1 \) edges (works even for cyclic graphs!)

On-board example:

Find the shortest path from \(C \) to: A B C D E F G H
Breadth-First Search (BFS) Algorithm

- Uses a queue to track vertices that need to be expanded
- Pseudocode (source vertex is s):
 1. $\text{Dist}[s] = 0$
 2. Enqueue(s)
 3. While queue is not empty
 1. $X = \text{dequeue}$
 2. For each vertex Y adjacent to X and not previously visited
 - $\text{Dist}[Y] = \text{Dist}[X] + 1$
 - $\text{Prev}[Y] = X$
 - Enqueue Y
- Running time (same as topological sort) = $O(|V| + |E|)$ (why?)

That was easy…what if edges have weights?

- BFS does not work anymore – minimum cost path may have additional hops

Shortest path from C to A:
- BFS: $C \rightarrow A$
 - (cost = 9)
- Minimum Cost Path = $C \rightarrow E \rightarrow D \rightarrow A$
 - (cost = 8)
Dijkstra to the rescue…

- Legendary figure in computer science; now a professor at University of Texas at Austin.
- Some gossip about D. from CSE 326 (2000)…
- Rumor #1: Supports teaching introductory computer courses without computers (pencil and paper programming).
- Rumor #2: Supposedly wouldn’t (until recently) read his e-mail; so, his staff had to print out his e-mails and put them in his mailbox.

Dijkstra’s Algorithm for Weighted Shortest Path

- Classic algorithm for solving shortest path in weighted graphs (without negative weights)
- A greedy algorithm (irrevocably makes decisions without considering future consequences)
- Basic Idea:
 - Similar to BFS
 - Each vertex has a cost for path from source
 - Vertices to be expanded have least cost seen so far
 - Greedy choice – always expand least cost vertex
 - But unlike BFS, a vertex already visited may be updated if a better path to it is found
Pseudocode for Dijkstra’s Algorithm

1. Initialize the cost of each node to ∞.
2. Initialize the cost of the source to 0.
3. While there are unknown nodes left in the graph:
 1. Select the unknown node N with the lowest cost.
 2. Mark N as known.
 3. For each node A adjacent to N:
 If $(N$’s cost + cost of $(N, A)) < A$’s cost
 A’s cost = N’s cost + cost of (N, A)
 Prev[A] = N //store preceding node

(Prev allows paths to be reconstructed)

Dijkstra’s Algorithm (greed in action)

Work through this example…

<table>
<thead>
<tr>
<th>vertex</th>
<th>known</th>
<th>cost</th>
<th>Prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Next Class:
Does Dijkstra’s method always work?
How fast does it run?

To Do:
Start Programming Assignment #2
(Don’t wait until the last few days!!!)
Continue reading and enjoying chapter 9