
1R. Rao, CSE 373

Lecture 22: Let’s Get Graphic – Graph Algorithms

✦ Today’s Agenda:
➭What is a graph?
➭ Some graphs that you already know
➭ Definitions and Properties
➭ Implementing Graphs
➭ Topological Sort

✦ Covered in Chapter 9 of the textbook

Some slides based on: CSE 326 by S. Wolfman, 2000

2R. Rao, CSE 373

What are graphs? (Take 1)

✦ Yes, this is a graph….

✦ But we are interested in a different kind of “graph”

3R. Rao, CSE 373

Motivation for Graphs

✦ Consider the data structures we
have looked at so far…

✦ Linked list: nodes with 1 incoming
edge + 1 outgoing edge

✦ Binary trees/heaps: nodes with 1
incoming edge + 2 outgoing edges

✦ Binomial trees/B-trees: nodes with
1 incoming edge + multiple
outgoing edges

✦ Up-trees: nodes with multiple
incoming edges + 1 outgoing edge

a

gd b

10

96 99

94

97

Value Next
node

Value Next
node

4R. Rao, CSE 373

Motivation for Graphs

✦ What is common among these data structures?

✦ How can you generalize them?

✦ Consider data structures for representing the following
problems…

5R. Rao, CSE 373

Course Prerequisites for CSE at UW

321143

142

322

326

341370

378

401

421

Nodes = courses
Directed edge = prerequisite

6R. Rao, CSE 373

Representing the Floor Plan of a House

F

B

Nodes = rooms
Edge = door or passage

F

B

7R. Rao, CSE 373

Representing Electrical Circuits

Nodes = battery, switch, resistor, etc.
Edges = connections

Battery Switch

Resistor

8R. Rao, CSE 373

Representing Expressions in Compilers

x1=q+y*z
x2=y*z-q

Naive:

common
subexpression

eliminated:

y z

*

-

q

+

q *

x1 x2

y z

-

q

+

q *

x1 x2

Nodes = symbols/operators
Edges = relationships

y*z calculated twice

9R. Rao, CSE 373

Information Transmission in a Computer Network

Seattle

New York

L.A.

Tokyo

Sydney

Seoul

Nodes = computers
Edges = transmission rates

128

140

181
30

16

56

10R. Rao, CSE 373

Traffic Flow on Highways

Nodes = cities
Edges = # vehicles on
connecting highway

UW

11R. Rao, CSE 373

Soap Opera Relationships

Victor

Ashley

Brad

Michelle

Wayne

Trisha
Peter

12R. Rao, CSE 373

Six Degrees of Separation from Kevin Bacon

Kevin
Bacon

Apollo
13

Tom
Hanks

Gary
Sinise

Forest
Gump

Robin
Wright

The
Princess

Bride

Wallace
Shawn

Cary
Elwes

Toy
Story

Laurie
Metcalf

Rosanna
Arquette

Desperately
Seeking Susan

After
Hours Cheech

Marin

Based on:

CSE 326, 2000

Where’s my Oscar?

13R. Rao, CSE 373

Six Degrees of Separation from Kevin Bacon

Apollo 13

A
pollo

13
F

orest G
um

p

The Princess Bride

The Princess Bride Toy Story

Desperately
Seeking

Susan

After Hours

Kevin
Bacon

Tom
Hanks

Gary
Sinise

Robin
Wright

Wallace
Shawn

Cary
Elwes

Laurie
Metcalf

Rosanna
Arquette

Cheech
Marin

14R. Rao, CSE 373

Graphs: Definition

✦ A graph is simply a collection of nodes plus edges
➭ Linked lists, trees, and heaps are all special cases of graphs

✦ The nodes are known as vertices (node = “vertex”)

✦ Formal Definition: A graph G is a pair (V, E) where
➭ V is a set of vertices or nodes
➭ E is a set of edges that connect vertices

15R. Rao, CSE 373

Graph Example

✦ Here is a graph G = (V, E)
➭ Each edge is a pair (v1, v2), where v1, v2 are vertices in V

V = {A, B, C, D, E, F}

E = {(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)}

A

B
C

F

D E

16R. Rao, CSE 373

Directed versus Undirected Graphs

✦ If the order of edge pairs (v1, v2) matters, the graph is
directed (also called a digraph): (v1, v2) ≠ (v2, v1)

✦ If the order of edge pairs (v1, v2) does not matter, the graph is
called an undirected graph: in this case, (v1, v2) = (v2, v1)

v1
v2

v1 v2

17R. Rao, CSE 373

Graph Representations

• Space and time are measured in terms of:

• Number of vertices = |V| and

• Number of edges = |E|

• There are two ways of representing graphs:

• The adjacency matrix representation

• The adjacency list representation

18R. Rao, CSE 373

Graph Representation: Adjacency Matrix

The adjacency matrix representation:

A

B
C

F

D E

A B C D E F

0 1 0 1 0 0

1 0 1 0 0 0

0 1 0 1 1 0

1 0 1 0 1 0

0 0 1 1 0 0

0 0 0 0 0 0

M(v, w) =
1 if (v, w) is in E

0 otherwise A

B

C

D

E

F

Space = ?

19R. Rao, CSE 373

Adjacency Matrix for a Digraph

A

B
C

F

D E

A B C D E F

0 1 0 1 0 0

0 0 1 0 0 0

0 0 0 1 1 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

A

B

C

D

E

F

M(v, w) =
1 if (v, w) is in E

0 otherwise

Space = |V|2

20R. Rao, CSE 373

The adjacency list representation: For each v in V,

B D

B D

C

A C E

D

E

A C

L(v) = list of w such that (v, w) is in E

A

B
C

F

D E

Graph Representation: Adjacency List

A

B

C

D

E

F

Space = ?

21R. Rao, CSE 373

A

B
C

F

D E

Graph Representation: Adjacency List

B D

B D

C

A C E

D

E

A C

Space = a |V| + 2 b |E|

a b

A

B

C

D

E

F

22R. Rao, CSE 373

B D

E

D

C

Space = ?

a b

Adjacency List for a Digraph

A

B

C

D

E

F

A

B
C

F

D E

E

Digraph Adjacency List

23R. Rao, CSE 373

B D

E

D

C

Space = a |V| + b |E|

a b

Adjacency List for a Digraph

A

B

C

D

E

F

A

B
C

F

D E

E

Digraph Adjacency List

24R. Rao, CSE 373

Graph Algorithm #1: Topological Sort

321143

142

322

326

341370

378

401

421

Problem: Find an order in
which all these courses can
be taken.
Example: 142 ! 143 ! 378
! 370 ! 321 ! 341 ! 322
! 326 ! 421 ! 401 To take a course, all its prerequisites

must be taken first

Graph of course
prerequisites

25R. Rao, CSE 373

Topological Sort

Topological sorting problem: given digraph G = (V, E) ,
find a linear ordering of its vertices such that:
for any edge (v, w) in E, v precedes w in the ordering

A

B
C

F

D E

On-board example:
Topo-Sort this digraph

26R. Rao, CSE 373

Topological Sort

Topological sorting problem: given digraph G = (V, E) ,
find a linear ordering of its vertices such that:
for any edge (v, w) in E, v precedes w in the ordering

A

B
C

F

D E
EA DFB C

Any linear ordering in which
all the arrows go to the right
is a valid solution

27R. Rao, CSE 373

Topological Sort

Topological sorting problem: given digraph G = (V, E) ,
find a linear ordering of its vertices such that:
for any edge (v, w) in E, v precedes w in the ordering

A

B
C

F

D E
FA DEB C

Not a valid topological
sort!

28R. Rao, CSE 373

Step 1: Identify vertices that have no incoming edges
• The “in-degree” of these vertices is zero

A

B
C

F

D E

Topological Sort Algorithm #1

29R. Rao, CSE 373

Step 1: Identify vertices that have no incoming edges
• If no such vertices, graph has cycle(s) (cyclic graph)
• Topological sort not possible – Halt.

A

B
C

D

Topological Sort Algorithm #1

Example of a cyclic graph

30R. Rao, CSE 373

Step 1: Identify vertices that have no incoming edges
• Select one such vertex

A

B
C

F

D E

Topological Sort Algorithm #1

Select

31R. Rao, CSE 373

A

B
C

F

D E

Topological Sort Algorithm #1

Step 2: Delete this vertex of in-degree 0 and all its
outgoing edges from the graph. Place it in the output.

32R. Rao, CSE 373

A

B
C

F

D E

Topological Sort Algorithm #1

Repeat Step 1 and Step 2 until graph is empty

Select

33R. Rao, CSE 373

Topological Sort Algorithm #1

Repeat Step 1 and Step 2 until graph is empty

A B

C

F

D E

Select

34R. Rao, CSE 373

Topological Sort Algorithm #1

Repeat Step 1 and Step 2 until graph is empty

C

D E

A B F

Select

35R. Rao, CSE 373

Topological Sort Algorithm #1

Repeat Step 1 and Step 2 until graph is empty

C D EA B F

Final Result:

36R. Rao, CSE 373

For input graph G = (V,E), Run Time = ?
Break down into total time to:

! Find a vertex with in-degree 0

! Remove its edges
! Place vertex in output

A

B
C

F

D E

Topological Sort Algorithm #1: Analysis

B D

E

ED

C

A

B

C

D

E

F

Assume
adjacency list
representation

37R. Rao, CSE 373

Calculate and store In-Degree of all vertices in an array
! Find vertex with in-degree 0: Search this array

! Remove its edges: Update this array

Topological Sort Algorithm #1: Analysis

B D

E

ED

C

A

B

C

D

E

F

0

1

0

2

2

1
A

B
C

F

D E

In-Degree
array

38R. Rao, CSE 373

For input graph G = (V,E), Run Time = ?
Break down into total time to:
! Find vertices with in-degree 0: |V| vertices, each takes

O(|V|) to search In-Degree array = O(|V|2)
! Remove edges: |E| edges
! Place vertices in output: |V| vertices

Total time = O(|V|2 + |E|)

Can we do better than quadratic time?

Can you think of a faster way to find vertices with in-degree 0?

Topological Sort Algorithm #1: Analysis

39R. Rao, CSE 373

Next Class: Faster Topological Sort and

Finding shortest ways to get to your classrooms

To Do:

Read and enjoy chapter 9

Have a great weekend!

