Today's Agenda:
- What is a graph?
- Some graphs that you already know
- Definitions and Properties
- Implementing Graphs
- Topological Sort

Covered in Chapter 9 of the textbook

Motivation for Graphs
- Consider the data structures we have looked at so far...
- Linked list: nodes with 1 incoming edge + 1 outgoing edge
- Binary trees/heaps: nodes with 1 incoming edge + 2 outgoing edges
- Binomial trees/B-trees: nodes with 1 incoming edge + multiple outgoing edges
- Up-trees: nodes with multiple incoming edges + 1 outgoing edge

What are graphs? (Take 1)
- Yes, this is a graph....
- But we are interested in a different kind of “graph”
Course Prerequisites for CSE at UW

Nodes = courses
Directed edge = prerequisite

Representing Electrical Circuits

Nodes = battery, switch, resistor, etc.
Edges = connections

Representing the Floor Plan of a House

Nodes = rooms
Edge = door or passage

Representing Expressions in Compilers

Naive:

Nodes = symbols/operators
Edges = relationships

y*z calculated twice

common subexpression eliminated:
Information Transmission in a Computer Network

Nodes = computers
Edges = transmission rates

Traffic Flow on Highways

Nodes = cities
Edges = # vehicles on connecting highway

Soap Opera Relationships

Six Degrees of Separation from Kevin Bacon

Where's my Oscar?
Graphs: Definition

- A graph is simply a collection of nodes plus edges
 - Linked lists, trees, and heaps are all special cases of graphs
- The nodes are known as vertices (node = “vertex”)
- Formal Definition: A graph G is a pair (V, E) where
 - V is a set of vertices or nodes
 - E is a set of edges that connect vertices

Directed versus Undirected Graphs

- If the order of edge pairs (v_1, v_2) matters, the graph is directed (also called a digraph): $(v_1, v_2) \neq (v_2, v_1)$

- If the order of edge pairs (v_1, v_2) does not matter, the graph is called an undirected graph: in this case, $(v_1, v_2) = (v_2, v_1)$
Graph Representations

- Space and time are measured in terms of:
 - Number of vertices = $|V|$ and
 - Number of edges = $|E|
- There are two ways of representing graphs:
 - The adjacency matrix representation
 - The adjacency list representation

Adjacency Matrix for a Digraph

$$M(v, w) = \begin{cases} 1 & \text{if } (v, w) \text{ is in } E \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{array}{cccccc}
A & B & C & D & E & F \\
\hline
A & 0 & 1 & 0 & 1 & 0 & 0 \\
B & 1 & 0 & 1 & 0 & 0 & 0 \\
C & 0 & 1 & 0 & 1 & 1 & 0 \\
D & 1 & 0 & 1 & 0 & 1 & 0 \\
E & 0 & 0 & 1 & 1 & 0 & 0 \\
F & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}$$

Space = $|V|^2$

Graph Representation: Adjacency Matrix

The adjacency matrix representation:

$$M(v, w) = \begin{cases} 1 & \text{if } (v, w) \text{ is in } E \\ 0 & \text{otherwise} \end{cases}$$

Space = ?

Graph Representation: Adjacency List

The adjacency list representation: For each v in V,

$L(v) = \text{list of } w \text{ such that } (v, w) \text{ is in } E$

Space = ?
Graph Representation: Adjacency List

Space = \(a |V| + 2b |E| \)

Adjacency List for a Digraph

Space = \(a |V| + b |E| \)

Adjacency List for a Digraph

Space = ?

Graph Algorithm #1: Topological Sort

Problem: Find an order in which all these courses can be taken.
Example: 142 \(\rightarrow \) 143 \(\rightarrow \) 378 \(\rightarrow \) 370 \(\rightarrow \) 321 \(\rightarrow \) 341 \(\rightarrow \) 322 \(\rightarrow \) 326 \(\rightarrow \) 421 \(\rightarrow \) 401

To take a course, all its prerequisites must be taken first
Topological Sort

Topological sorting problem: given digraph $G = (V, E)$, find a linear ordering of its vertices such that:

for any edge $(v, w) \in E$, v precedes w in the ordering

On-board example:
Topo-Sort this digraph

Step 1: Identify vertices that have no incoming edges
- The “in-degree” of these vertices is zero

Topological Sort Algorithm #1
Topological Sort Algorithm #1

Step 1: Identify vertices that have no incoming edges
- If no such vertices, graph has cycle(s) (cyclic graph)
- Topological sort not possible – Halt.

Example of a cyclic graph

Step 2: Delete this vertex of in-degree 0 and all its outgoing edges from the graph. Place it in the output.

Select

Repeat Step 1 and Step 2 until graph is empty

Select
Topological Sort Algorithm #1

Repeat Step 1 and Step 2 until graph is empty

Final Result:

Final Result:
Topological Sort Algorithm #1: Analysis

Calculate and store In-Degree of all vertices in an array

- Find vertex with in-degree 0: Search this array
- Remove its edges: Update this array

In-Degree array

For input graph $G = (V,E)$, Run Time = ?

Break down into total time to:
- Find vertices with in-degree 0: $|V|$ vertices, each takes $O(|V|)$ to search In-Degree array = $O(|V|^2)$
- Remove edges: $|E|$ edges
- Place vertices in output: $|V|$ vertices

Total time = $O(|V|^2 + |E|)

Can we do better than quadratic time?

Can you think of a faster way to find vertices with in-degree 0?

Next Class: Faster Topological Sort and Finding shortest ways to get to your classrooms

To Do:
Read and enjoy chapter 9
Have a great weekend!