Lecture 22: Let's Get Graphic - Graph Algorithms

- Today's Agenda:
\Rightarrow What is a graph?
\leadsto Some graphs that you already know
\Rightarrow Definitions and Properties
\Leftrightarrow Implementing Graphs
\Rightarrow Topological Sort
- Covered in Chapter 9 of the textbook

What are graphs? (Take 1)

- Yes, this is a graph....

- But we are interested in a different kind of "graph"

Motivation for Graphs

- Consider the data structures we have looked at so far...
- Linked list: nodes with 1 incoming edge +1 outgoing edge
- Binary trees/heaps: nodes with 1 incoming edge +2 outgoing edges
- Binomial trees/B-trees: nodes with 1 incoming edge + multiple outgoing edges
- Up-trees: nodes with multiple incoming edges +1 outgoing edge

Motivation for Graphs

- What is common among these data structures?
- How can you generalize them?
- Consider data structures for representing the following problems...

Course Prerequisites for CSE at UW

Representing the Floor Plan of a House

Nodes $=$ rooms
Edge $=$ door or passage

Representing Electrical Circuits

Nodes $=$ battery, swit
Edges $=$ connections

Representing Expressions in Compilers

Nodes $=$ symbols/operators
Edges $=$ relationships

Traffic Flow on Highways

Soap Opera Relationships

Six Degrees of Separation from Kevin Bacon

Graphs: Definition

- A graph is simply a collection of nodes plus edges
\Rightarrow Linked lists, trees, and heaps are all special cases of graphs
- The nodes are known as vertices (node = "vertex")
\downarrow Formal Definition: A graph G is a pair (V, E) where
$\Rightarrow V$ is a set of vertices or nodes
$\Rightarrow E$ is a set of edges that connect vertices

Graph Example

\rightarrow Here is a graph $G=(V, E)$
\Rightarrow Each edge is a pair $\left(v_{1}, v_{2}\right)$, where v_{1}, v_{2} are vertices in V
$V=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}\}$
$E=\{(\mathrm{A}, \mathrm{B}),(\mathrm{A}, \mathrm{D}),(\mathrm{B}, \mathrm{C}),(\mathrm{C}, \mathrm{D}),(\mathrm{C}, \mathrm{E}),(\mathrm{D}, \mathrm{E})\}$

Directed versus Undirected Graphs

- If the order of edge pairs $\left(v_{1}, v_{2}\right)$ matters, the graph is directed (also called a digraph): $\left(v_{1}, v_{2}\right) \neq\left(v_{2}, v_{1}\right)$

\rightarrow If the order of edge pairs $\left(v_{1}, v_{2}\right)$ does not matter, the graph is called an undirected graph: in this case, $\left(v_{1}, v_{2}\right)=\left(v_{2}, v_{1}\right)$

Graph Representations

- Space and time are measured in terms of:
- Number of vertices $=|V|$ and
- Number of edges $=|E|$
- There are two ways of representing graphs:
- The adjacency matrix representation
- The adjacency list representation

Graph Representation: Adjacency Matrix

The adjacency matrix representation: \quad Space $=$? $M(v, w)=\left\{\begin{array}{ll}1 & \text { if }(v, w) \text { is in } \mathrm{E} \\ 0 & \text { otherwise }\end{array} \quad \mathrm{A}\left(\begin{array}{cccccc}\mathrm{A} & \mathrm{B} & \mathrm{C} & \mathrm{D} & \mathrm{E} & \mathrm{F} \\ 0 & 1 & 0 & 1 & 0 & 0 \\ \mathrm{~B} \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ \mathrm{C} \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & \mathrm{D} . \operatorname{Rao}, \mathrm{CSE} 373\end{array}\right.\right.$
Adjacency Matrix for a Digraph

$$
M(v, w)= \begin{cases}1 & \text { if }(v, w) \text { is in } \mathrm{E} \\ 0 & \text { otherwise }\end{cases}
$$

$$
\text { Space }=|V|^{2}
$$

(F)
A
B
C
D
E
F $\left(\begin{array}{cccccc}\text { A } & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

Graph Representation: Adjacency List

The adjacency list representation: For each v in V, $L(v)=$ list of w such that (v, w) is in E

Adjacency List for a Digraph

Adjacency List for a Digraph

Digraph

Graph Algorithm \#1: Topological Sort

Graph of course prerequisites

To take a course, all its prerequisites must be taken first

Topological Sort

Topological sorting problem: given digraph $G=(V, E)$, find a linear ordering of its vertices such that:
for any edge (v, w) in E, v precedes w in the ordering

On-board example:
(F)

Topo-Sort this digraph

Topological Sort

Topological sorting problem: given digraph $G=(V, E)$, find a linear ordering of its vertices such that:
for any edge (v, w) in E, v precedes w in the ordering

R. Rao, CSE 373

Topological Sort

Topological sorting problem: given digraph $G=(V, E)$, find a linear ordering of its vertices such that:
for any edge (v, w) in E, v precedes w in the ordering

Topological Sort Algorithm \#1

Step 1: Identify vertices that have no incoming edges

- The "in-degree" of these vertices is zero

Topological Sort Algorithm \#1

Step 1: Identify vertices that have no incoming edges

- If no such vertices, graph has cycle(s) (cyclic graph)
- Topological sort not possible - Halt.

Topological Sort Algorithm \#1

Step 1: Identify vertices that have no incoming edges

- Select one such vertex

Topological Sort Algorithm \#1

Step 2: Delete this vertex of in-degree 0 and all its outgoing edges from the graph. Place it in the output.

Topological Sort Algorithm \#1
Repeat Step 1 and Step 2 until graph is empty
Select

Topological Sort Algorithm \#1

Repeat Step 1 and Step 2 until graph is empty

Topological Sort Algorithm \#1

Repeat Step 1 and Step 2 until graph is empty

Topological Sort Algorithm \#1

Repeat Step 1 and Step 2 until graph is empty

Final Result:

Topological Sort Algorithm \#1: Analysis

For input graph $\mathrm{G}=(V, E)$, Run Time $=$?

Assume
adjacency list representation

Topological Sort Algorithm \#1: Analysis

Calculate and store In-Degree of all vertices in an array
\rightarrow Find vertex with in-degree 0: Search this array
\rightarrow Remove its edges: Update this array

Topological Sort Algorithm \#1: Analysis
For input graph $\mathrm{G}=(V, E)$, Run Time $=$?
Break down into total time to:
\rightarrow Find vertices with in-degree $0:|V|$ vertices, each takes
$\mathrm{O}(|V|)$ to search In-Degree array $=\mathrm{O}\left(|V|^{2}\right)$
\rightarrow Remove edges: $|E|$ edges
\rightarrow Place vertices in output: $|V|$ vertices
Total time $=\mathbf{O}\left(|\boldsymbol{V}|^{2}+|\boldsymbol{E}|\right)$
Can we do better than quadratic time?

Can you think of a faster way to find vertices with in-degree 0 ?

Next Class: Faster Topological Sort and
Finding shortest ways to get to your classrooms

To Do:
Read and enjoy chapter 9
Have a great weekend!

