Lecture 21: Union and Find between Up-Trees

- Today's Agenda:
\Rightarrow Planting and growing a forest of Up-Trees
- Union-ing and Find-ing
- Extended example
\Rightarrow Implementing Union/Find
\Rightarrow Smart Union and Find
- Union-by-size/height and Path Compression
\Rightarrow Run Time Analysis - as tough as it gets!
- Covered in Chapter 8 of the textbook

Recall from Last Time: Disjoint Set ADT

- Stores N unique elements. Two operations:
\Rightarrow Find: Given an element, return the name of its equivalence class (its set)
\Rightarrow Union: Given the names of two equivalence classes, merge them into one class

Example:
Initial Classes $=$
$\{1,4,8\},\{2,3\}$,
$\{6\},\{7\},\{10,9,5\}$
Name of equiv. class underlined

Up-Tree Data Structure for Disjoint Sets

\rightarrow Each equivalence class (or set) is an up-tree with its root as its representative member (= class name)

- All members of a given set are nodes in that set's uptree
- Hash table maps input data to a node e.g. input string \rightarrow integer index

$\{\mathrm{a}, \mathrm{d}, \mathrm{g}, \mathrm{b}, \mathrm{e}\} \quad\{\mathrm{c}, \mathrm{f}\}$
\{h\}
Up-trees are usually not binary!

Neat implementation trick for Up-Trees

- Forest of up-trees can easily be stored in an array (call it "up")
- If node names are integers or characters, can use a very simple, perfect hash function: $\operatorname{Hash}(\mathrm{X})=\mathrm{X}$
- up $[\mathrm{X}]=$ parent of X ;

$$
\begin{aligned}
& =0 \text { if root } \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline- & \mathbf{0} & 1 & \mathbf{0} & 1 & 2 & 3 & 1 & \mathbf{0} \\
\hline
\end{array}
\end{aligned}
$$

Example of Find

Find: Just traverse to the root!

$$
\operatorname{Find}(f)=c
$$

$$
\operatorname{Find}(e)=a
$$

Runtime $=$?

Example of Union

Union: Just hang one root from the other!

Runtime $=$?
Now:

Find (f) $=c$
Find $(\mathrm{e})=\mathrm{c}$

01 (a) 2 (b) 3 (c) 4 (d) $5(\mathrm{e}) 6(\mathrm{f}) 7(\mathrm{~g})$

0	8							
-	$\mathbf{3}$	1	$\mathbf{0}$	1	2	3	$\mathbf{0}$	

Change a (from 0) to point to c $(=3)$

A more detailed example...

Union(a,d)

A more detailed example...

A more detailed example...

Union(d,e) - But (you say) d and e are not roots!
May be allowed in some implementations - do Find first to get roots Since $\operatorname{Find}(d)=\operatorname{Find}(e)$, union already done!

But: while we're finding \mathbf{e}, could we do something to speed up Find(e) next time? (hold that thought!)

A more detailed example...

Union(c,f)

A more detailed example

Implementation of Find and Union

```
int Find(int X, DisjSet up)
{ // Assumes X = Hash(X_Element)
    // x_Element could be str/char etc.
    if (up[X] <= 0) // Root
    return X; //Return root = set name
    else
    //Find parent
    return Find(up[x], up);
}
```

Runtime of Find: $\underline{O(\max \text { height) }}$

```
    up[Y] = X;
void Union(DisjSet up,
        int X, int Y) {
        //Make sure X, Y are
        //roots
    assert(up [X] == 0);
    assert(up [Y] == 0);
}
```

 Height depends on previous Unions
 \(\rightarrow\) Best case: 1-2, 1-3, 1-4, \(\ldots \quad \mathrm{O}(1)\)
 \(\rightarrow\) Worst case: \(2-1,3-2,4-3, \ldots \mathrm{O}(\mathrm{N})\) Can we do better?

Let's look back at our example...

Speeding Up Union/Find: Union-by-Size

- For M Finds and N-1 Unions, worst case time is $\mathrm{O}(\mathrm{MN}+\mathrm{N})$
\Rightarrow Can we speed things up by being clever about growing our up-trees?
- Idea: In Union, always make root of larger tree the new root
- Why? Minimizes height of the new up-tree

Union(c,a)
R. Rao, CSE 373

Union-by-Size!

Trick for Storing Size Information

- Instead of storing 0 in root, store up-tree size as negative value in root node
- Why not positive value?
\Rightarrow Would not know if array entry is size or parent pointer

Union-by-Size Code

```
void Union(DisjSet up, int X, int Y)
    {
    //X, Y are roots
    //containing (-size) of up-trees
    assert(up[X] < 0);
    assert(up[Y] < 0);
    if (-up[X] > -up[Y]) {
    //update size of }X\mathrm{ and root of }
        up[X] += up[Y];
        up[Y] = X;
    }
    else { //size of X < size of Y
        up[Y] += up[X]; New run time of Union = ?
        up[X] = Y;
    }
}
R. Rao, CSE }37

\section*{Union-by-Size: Analysis}
- Finds are O (max up-tree height) for a forest of up-trees containing N nodes
- Number of nodes in an up-tree of height \(h\) using union-by-size is \(\geq 2^{h}\)
- Pick up-tree with max height
- Then, \(2^{\text {max height }} \leq \mathrm{N}\)
- max height \(\leq \log \mathrm{N}\)
- Find takes \(\mathbf{O}(\log \mathbf{N})\)

Base case: \(h=0\), tree has \(2^{0}=1\) node Induction hypothesis: Assume true for \(h<h^{\prime}\) Induction Step: New tree of height \(h^{\prime}\) was formed via union of two trees of height \(h^{\prime}-1\) Each tree then has \(\geq 2^{h^{\prime}-1}\) nodes by the induction hypothesis
So, total nodes \(\geq 2^{h^{\prime}-1}+2^{h^{\prime}-1}=2^{h^{\prime}}\)
True for all \(h\)

\section*{Union-by-Height}
- Textbook describes alternative strategy of Union-by-height
- Keep track of height of each up-tree in the root nodes
- Union makes root of up-tree with greater height the new root
- Same results and similar implementation as Union-by-Size
\(\Rightarrow\) Find is \(\mathrm{O}(\log \mathrm{N})\) and Union is \(\mathrm{O}(1)\)

\section*{Speeding Up Find: Path Compression}
- If we do M Finds on same element \(\rightarrow \mathrm{O}(\mathrm{M} \log \mathrm{N})\) time
\(\Rightarrow\) Can we modify Find to have side-effects so that next Find will be faster?
- Path Compression: Point everything along path of a Find to root
- Reduces height of entire access path to 1: Finds get faster!
\(\Rightarrow\) Déjà vu? Idea similar to the one behind your old friend - splay tree...


\section*{A P.C. example with more meat...}
\(\operatorname{Find}(\mathbf{e})\)


\section*{How to P.C. - Path Compression Code}
```

int Find(int x, DisjSet up)
{ // Assumes X = Hash(X_Element)
// X_Element could be str/char etc.
if (up [x] <= 0) // Root
return X; //Return root = set name
else
//Find parent
return up [x] = Find(up [x], up);
}

```

Make all nodes along access path point to root
- Trivial modification of original Find
- New running time of Find = ?

How to P.C. - Path Compression Code
```

int Find(int X, DisjSet up)
{ // Assumes X = Hash(X_Element)
// X_Element could be str/char etc.
if (up[X] <= 0) // Root
return X; //Return root = set name
else
//Find parent
return up [X] = Find(up [X], up);
}

```

Collapsing the tree by pointing to root
- Find still takes O(max up-tree height) worst case
- But what happens to the tree heights over time?
- What is the amortized run time of Find if we do M Finds?

\section*{Analysis of P.C. with Union-by-Size}
- R. E. Tarjan (of the up-trees fame) showed that:
\(\Rightarrow\) When both P.C. and Union-by-Size are used, the worst case run time for a sequence of M operations (Unions or Finds) is \(\Theta(\mathrm{M} \alpha(\mathrm{M}, \mathrm{N}))\)
- What is \(\alpha(\mathrm{M}, \mathrm{N})\) ?
\(\Rightarrow \alpha(\mathrm{M}, \mathrm{N})\) is the inverse of Ackermann's function
- What is Ackermann's function?

\section*{Digression: Them slow-growing functions...}
\(\rightarrow\) How fast does \(\log \mathrm{N}\) grow? \(\log \mathrm{N}=4\) for \(\mathrm{N}=16=2^{4}\)
\(\Rightarrow\) Grows quite slowly
- Let \(\log ^{(k)} \mathrm{N}=\log (\log (\log \ldots(\log \mathrm{N}))) \quad(k \log \mathrm{~s})\)
- Let \(\log ^{*} \mathrm{~N}=\) minimum \(k\) such that \(\log ^{(\mathrm{k})} \mathrm{N} \leq 1\)
\(\uparrow\) How fast does \(\log ^{*} \mathrm{~N}\) grow? \(\log ^{*} \mathrm{~N}=4\) for \(\mathrm{N}=65536=2^{2^{2^{2}}}\)
\(\Rightarrow\) Grows very slowly
- Ackermann created a really explosive function \(A(i, j)\) whose inverse \(\alpha(\mathrm{M}, \mathrm{N})\) grows very, very slowly (slower than \(\log ^{*} \mathrm{~N}\) )
\(\bullet\) How slow does \(\alpha(M, N)\) grow? \(\alpha(M, N)=4\) for \(M(\geq N)\) far larger than the number of atoms in the universe \(\left(2^{300}\right)!\) !

\section*{Analysis of P.C. with Union-by-Size}
\(\rightarrow\) R. E. Tarjan (of the up-trees fame) showed that:
\(\Rightarrow\) When both P.C. and Union-by-Size are used, the worst case run time for a sequence of M operations (Unions or Finds) is \(\Theta(M \alpha(M, N))\)
\(\Rightarrow \alpha(\mathrm{M}, \mathrm{N}) \leq 4\) for all practical choices of M and N
- Textbook proves weaker result of \(\mathrm{O}(\mathrm{M} \log * \mathrm{~N})\) time
\(\Rightarrow 7\) pages and 8 Lemmas! (Check it out but no need to know the proof)
- Amortized run time per operation = total time/(\# operations) \(=\Theta(\mathrm{M} \alpha(\mathrm{M}, \mathrm{N})) / \mathrm{M}=\Theta(\alpha(\mathrm{M}, \mathrm{N})) \approx \Theta(1)\) for all practical purposes (constant time!)

\section*{Summary of Disjoint Set and Union/Find}
- Disjoint Set data structure arises in many applications where objects of interest fall into different equivalence classes or sets \(\Rightarrow\) Cities on a map, electrical components on chip, computers in a network, people related to each other by blood, etc.
- Two main operations: Union of two classes and Find class name for a given element
- Up-Tree data structure allows efficient array implementation
\(\Rightarrow\) Unions take \(\mathrm{O}(1)\) worst case time, Finds can take \(\mathrm{O}(\mathrm{N})\)
\(\Rightarrow\) Union-by-Size reduces worst case time for Find to O( \(\log \mathrm{N}\) )
\(\Rightarrow\) Union-by-Size plus Path Compression allows further speedup
- Any sequence of M Union/Find operations results in O(1) amortized time per operation (for all practical purposes)

Next Class: CSE 373 gets graphic...
(Algo-rhythms on Graphs)

To Do:
Finish Homework \#4 (due next class)
Finish reading chapter 8 Start reading chapter 9```

