
1R. Rao, CSE 373

Lecture 21: Union and Find between Up-Trees

✦ Today’s Agenda:
➭ Planting and growing a forest of Up-Trees

➧ Union-ing and Find-ing
➧ Extended example

➭ Implementing Union/Find
➭ Smart Union and Find

➧ Union-by-size/height and Path Compression
➭ Run Time Analysis – as tough as it gets!

✦ Covered in Chapter 8 of the textbook

Some of the material on these slides are courtesy of: S. Wolfman, CSE 326, 2000

2R. Rao, CSE 373

Recall from Last Time: Disjoint Set ADT

✦ Stores N unique elements. Two operations:
➭ Find: Given an element, return the name of its equivalence

class (its set)
➭ Union: Given the names of two equivalence classes, merge

them into one class

{1,4,8}

{7}

{6}

{10,5,9}
{2,3}

Find(4)

8

Union(3,6)

{2,3,6}

Example:
Initial Classes =
{1,4,8}, {2,3},
{6}, {7}, {10,9,5}
Name of equiv.
class underlined



3R. Rao, CSE 373

Up-Tree Data Structure for Disjoint Sets

✦ Each equivalence class (or
set) is an up-tree with its
root as its representative
member (= class name)

✦ All members of a given set
are nodes in that set’s up-
tree

✦ Hash table maps input data
to a node e.g. input string
! integer index

a c

g

h

d b

e

Up-trees are usually not binary!

f

{a,d,g,b,e} {c,f} {h}

NULL NULL NULL

4R. Rao, CSE 373

0 1 0 1 2 3 1 0-

0 1 (a) 2 (b) 3 (c) 4 (d) 5 (e) 6 (f) 7 (g) 8 (h)

Neat implementation trick for Up-Trees

✦ Forest of up-trees can
easily be stored in an
array (call it “up”)

✦ If node names are
integers or characters,
can use a very simple,
perfect hash function:
Hash(X) = X

✦ up[X]= parent of X;
= 0 if root

Array up:

a c

g

h

d b

e

f

NULL NULL NULL



5R. Rao, CSE 373

Example of Find

a c g

d b

e

f

Find(f) = c
Find(e) = a

Find: Just traverse to the root!

Runtime = ?

0 1 0 1 2 3 0-

0 1 (a) 2 (b) 3 (c) 4 (d) 5 (e) 6 (f) 7 (g) 8

Array up:

6R. Rao, CSE 373

Example of Union

a c g

d b

e

f

Union(c,a)

Union: Just hang one root from the other!

Runtime = ?

Now:
Find(f) = c
Find(e) = c

3 1 0 1 2 3 0-

0 1 (a) 2 (b) 3 (c) 4 (d) 5 (e) 6 (f) 7 (g) 8

Array up:

Change a (from 0) to point to c (= 3)



7R. Rao, CSE 373

A more detailed example

e

f g ha b c d i

Union(b,e)

e f g ha b c d i

Initial Sets:

8R. Rao, CSE 373

Union(a,d)

e

f g ha b c d i

f g ha b c i

d e

A more detailed example…



9R. Rao, CSE 373

Union(a,b)

f g ha b c i

d e

f g ha

b

c i

d

e

A more detailed example…

10R. Rao, CSE 373

Union(d,e) – But (you say) d and e are not roots!
May be allowed in some implementations – do Find first to get roots
Since Find(d) = Find(e), union already done!

f g ha

b

c i

d

e

But: while we’re finding e, could we do something to
speed up Find(e) next time? (hold that thought!)

A more detailed example…



11R. Rao, CSE 373

Union(h,i)

f g ha

b

c i

d

e

f g ha

b

c

id

e

A more detailed example (continued)

12R. Rao, CSE 373

Union(c,f)

f g ha

b

c

id

e

f

g ha

b

c

id

e

A more detailed example…



13R. Rao, CSE 373

Union(c,a)

f

g ha

b

c

id

e

f

g h

a

b

c

i

d

e

A more detailed example

14R. Rao, CSE 373

Implementation of Find and Union

int Find(int X, DisjSet up)

{ // Assumes X = Hash(X_Element)

// X_Element could be str/char etc.

if (up[X] <= 0) // Root

return X; //Return root = set name

else

//Find parent

return Find(up[X], up);

}

void Union(DisjSet up,
int X, int Y) {

//Make sure X, Y are
//roots

assert(up[X] == 0);

assert(up[Y] == 0);

up[Y] = X;

}

Runtime of Find: O(max height)
Height depends on previous Unions
!Best case: 1-2, 1-3, 1-4,… O(1)
!Worst case: 2-1, 3-2, 4-3,… O(N)

Runtime of Union: O(1)

Can we do better?



15R. Rao, CSE 373

Union(c,a)

f

g ha

b

c

id

e

f

g h

a

b

c

i

d

e
Could we do a better job on
this Union? What happened to e?

Let’s look back at our example…

16R. Rao, CSE 373

Speeding Up Union/Find: Union-by-Size

✦ For M Finds and N-1 Unions, worst case time is O(MN+N)
➭ Can we speed things up by being clever about growing our up-trees?

✦ Idea: In Union, always make root of larger tree the new root

✦ Why? Minimizes height of the new up-tree

f

g ha

b

c

id

e

f

g h

a

b

c

i

d

e Union-by-Size!

f

g ha

b c id

e

Union(c,a)



17R. Rao, CSE 373

Trick for Storing Size Information

✦ Instead of storing 0
in root, store up-tree
size as negative value
in root node

✦ Why not positive
value?
➭ Would not know if

array entry is size or
parent pointer

-5 1 -2 1 2 3 1 -1-

0 1 (a) 2 (b) 3 (c) 4 (d) 5 (e) 6 (f) 7 (g) 8 (h)

Array up:

a c

g

h

d b

e

f

NULL NULL NULL

18R. Rao, CSE 373

Union-by-Size Code

New run time of Union = ?

New run time of Find = ?

void Union(DisjSet up, int X, int Y)
{
//X, Y are roots
//containing (-size) of up-trees
assert(up[X] < 0);
assert(up[Y] < 0);

if (-up[X] > -up[Y]) {
//update size of X and root of Y

up[X] += up[Y];
up[Y] = X;

}
else { //size of X < size of Y

up[Y] += up[X];
up[X] = Y;

}
}



19R. Rao, CSE 373

Union-by-Size: Analysis

✦ Finds are O(max up-tree height) for a forest of up-trees
containing N nodes

✦ Number of nodes in an up-tree of height h using union-by-size
is ≥ 2h

✦ Pick up-tree with
max height

✦ Then, 2max height ≤ N

✦ max height ≤ log N

✦ Find takes O(log N)

Base case: h = 0, tree has 20 = 1 node
Induction hypothesis: Assume true for h < h′

Induction Step: New tree of height h′ was
formed via union of two trees of height h′-1
Each tree then has ≥ 2h′-1 nodes by the
induction hypothesis

So, total nodes ≥ 2h′-1 + 2h′-1 = 2h′

! True for all h

20R. Rao, CSE 373

Union-by-Height

✦ Textbook describes alternative strategy of Union-by-height

✦ Keep track of height of each up-tree in the root nodes

✦ Union makes root of up-tree with greater height the new root

✦ Same results and similar implementation as Union-by-Size
➭ Find is O(log N) and Union is O(1)



21R. Rao, CSE 373

Speeding Up Find: Path Compression

f ga
b

c
d

e

✦ If we do M Finds on same element ! O(M log N) time
➭ Can we modify Find to have side-effects so that next Find will be faster?

✦ Path Compression: Point everything along path of a Find to root

✦ Reduces height of entire access path to 1: Finds get faster!
➭ Déjà vu? Idea similar to the one behind your old friend – splay tree…

f ga
b

c
d

e

Path compression!

Find(e)

22R. Rao, CSE 373

A P.C. example with more meat…

f ha

b

c

d

e

g

Find(e)

i

f ha

c

d

e

g

b

i



23R. Rao, CSE 373

• Trivial modification of original Find
• New running time of Find = ?

int Find(int X, DisjSet up)

{ // Assumes X = Hash(X_Element)

// X_Element could be str/char etc.

if (up[X] <= 0) // Root

return X; //Return root = set name

else

//Find parent

return up[X] = Find(up[X], up);

}

Make all nodes along
access path point to root

How to P.C. – Path Compression Code

24R. Rao, CSE 373

• Find still takes O(max up-tree height) worst case
• But what happens to the tree heights over time?
• What is the amortized run time of Find if we do M Finds?

int Find(int X, DisjSet up)

{ // Assumes X = Hash(X_Element)

// X_Element could be str/char etc.

if (up[X] <= 0) // Root

return X; //Return root = set name

else

//Find parent

return up[X] = Find(up[X], up);

}

Collapsing the tree by
pointing to root

How to P.C. – Path Compression Code



25R. Rao, CSE 373

Analysis of P.C. with Union-by-Size

✦ R. E. Tarjan (of the up-trees fame) showed that:
➭ When both P.C. and Union-by-Size are used, the worst case

run time for a sequence of M operations (Unions or Finds) is
Θ(M α(M,N))

✦ What is α(M,N)?
➭ α(M,N) is the inverse of Ackermann’s function

✦ What is Ackermann’s function?

26R. Rao, CSE 373

Digression: Them slow-growing functions…

✦ How fast does log N grow? log N = 4 for N = 16 = 24

➭ Grows quite slowly

✦ Let log(k) N = log (log (log … (log N))) (k logs)

✦ Let log* N = minimum k such that log(k) N ≤ 1

✦ How fast does log* N grow? log* N = 4 for N = 65536 = 22

➭ Grows very slowly

✦ Ackermann created a really explosive function A(i, j) whose
inverse α(M, N) grows very, very slowly (slower than log* N)

✦ How slow does α(M, N) grow? α(M, N) = 4 for M (≥ N) far
larger than the number of atoms in the universe (2300)!!

22



27R. Rao, CSE 373

✦ R. E. Tarjan (of the up-trees fame) showed that:
➭When both P.C. and Union-by-Size are used, the worst

case run time for a sequence of M operations (Unions or
Finds) is Θ(M α(M,N))

➭ α(M, N) ≤ 4 for all practical choices of M and N

✦ Textbook proves weaker result of O(M log* N) time
➭ 7 pages and 8 Lemmas! (Check it out but no need to know the proof)

✦ Amortized run time per operation = total time/(# operations)
= Θ(M α(M,N))/M = Θ(α(M,N)) ≈ Θ(1) for all practical
purposes (constant time!)

Analysis of P.C. with Union-by-Size

28R. Rao, CSE 373

Summary of Disjoint Set and Union/Find

✦ Disjoint Set data structure arises in many applications where
objects of interest fall into different equivalence classes or sets
➭ Cities on a map, electrical components on chip, computers in a

network, people related to each other by blood, etc.

✦ Two main operations: Union of two classes and Find class
name for a given element

✦ Up-Tree data structure allows efficient array implementation
➭ Unions take O(1) worst case time, Finds can take O(N)
➭ Union-by-Size reduces worst case time for Find to O(log N)
➭ Union-by-Size plus Path Compression allows further speedup

➧ Any sequence of M Union/Find operations results in O(1)
amortized time per operation (for all practical purposes)



29R. Rao, CSE 373

Next Class: CSE 373 gets graphic…

(Algo-rhythms on Graphs)

To Do:

Finish Homework #4 (due next class)

Finish reading chapter 8

Start reading chapter 9


