Lecture 21: Union and Find between Up-Trees

+ Today’s Agenda
< Planting and growing aforest of Up-Trees
» Union-ing and Find-ing
» Extended example
< Implementing Union/Find
< Smart Union and Find
» Union-by-size/height and Path Compression
< Run Time Analysis — as tough as it gets!

+ Covered in Chapter 8 of the textbook

R. Rao, CSE 373 Some of the material on these slides are courtesy of: S. Wolfman, CSE 326, 2000 1

Recall from Last Time: Digoint Set ADT

+ Stores N unique elements. Two operations:
< Find: Given an element, return the name of its equivalence
class (its set)
< Union: Given the names of two equivalence classes, merge
them into one class

Example: Find(4) —_
Initial Classes =
(148}, {23}, g«
{6},{7}.{10,9,5}
Name of equiv.
class underlined

Union(3,6) <~

R. Rao, CSE 373 2

Up-Tree Data Structure for Digoint Sets

+ Each equivalence class (or NULL NULL |NULL
set) is an up-tree with its é) Cl‘)
root as its representative e
member (= class name)

+ All members of agiven set e o
arenodesin that set’s up-
tree

+ Hash table maps input data

to anode e.g. input string
—> integer index {adgbe {cf} {h}
Up-trees are usually not binary!

R. Rao, CSE 373 3

Neat implementation trick for Up-Trees

+ Forest of up-trees can NULL NULL |NULL
easily be stored in an e

array (cal it “up”)
+ If node names are é)
integers or characters, o o
can useavery simple,
perfect hash function:
Hash(X) = X
4+ up [X] = parent of X; l
=0ifroot 0 1(a8) 2(b) 3(9) 4(d) 5(e) 6(7) 7(g) 8(h)

Arrayup:| - | 0| 1|0 1}2 (3|10

R. Rao, CSE 373 4

Example of Find

Find: Just traverse to the root! F F

Find(f) =c

Find(e) =a @ o
Runtime="? e

0 1(a) 2(b) 3(c) 4(d) 5(e) 6(f) 7(g) 8

Arrayup: | - | O |10 2122]3]|0

R. Rao, CSE 373 XN — 5

Example of Union

Union: Just hang one root from the other!

Union(c.a) (a) (¢) é)
Runtime = ?
Now: e o

Find(f) =c
Find(e) =c

0 1(@ 2(b) 3(c) 4(d)y5(e) 6(f) 7(g 8
Arrayup: | - | 3] 1]0(1|2]|3]|0

R. Reo, CSE 373 Change a (from 0) to point to ¢ (= 3) 6

e detailed exampl

ééééééé&oé

éiéé ofcXolo

é&béééééé

a,a‘é 6666

A more detailed example...

4 406660

Union(a,b)

& 60060

R. Rao, CSE 373

A more detailed example...

Union(d,e) — But (you say) d and e are not roots!

May be allowed in some implementations — do Find first to get roots
Since Find(d) = Find(e), union aready done!

ééééé

But: while we're finding e, could we do something to
speed up Find(e) next time? (hold that thought!)

R. Rao, CSE 373 10

A more detailed example (continued)

Union(h,i)

QOO0

R. Rao, CSE 373

QOO

11

A more detailed example...

Union(c,f)

) OOEE
é -

R. Rao, CSE 373

QQ OO
QOO O

12

A more detailed example

Union(c,a)

45573 -

R. Rao, CSE 373

QO

13

I mplementation of Find and Union

int Find(int X, DisjSet up)
Hash (X_Element)

{ // Assumes X =

// X_Element could be str/char etc.

if (up[X] <= 0) // Root
return X; //Return root
else

//Find parent

return Find (up[X], up):;

= set name

Runtime of Find: O(max height)

Height depends on previous Unions

2>Best case: 1-2, 1-3, 1-4,...

o(1)

void Union(DisjSet up,
int X, int ¥Y) {

//Make sure X, Y are
//roots
assert (up[X] == 0);
assert (up[Y] == 0);
up[Y] = X;
}

Runtime of Union: O(1)

>Worst case: 2-1, 3-2, 4-3,... O(N) Can we do better?

R. Rao, CSE 373

14

Let’slook back at our example...

Union(c,a)

{553 45

Could we do abetter job on e

this Union? What happened to €?

R. Rao, CSE 373

Speeding Up Union/Find: Union-by-Size

+ For M Finds and N-1 Unions, worst case time is O(MN+N)
< Can we speed things up by being clever about growing our up-trees?

+ Idea In Union, always make root of larger tree the new root

+ ? Minimizes height of the new up-tree

Union(c,a)

R. Rao, CSE 373

&

Union-by-Size!

16

Trick for Storing Size Information

+ Instead of storing O NULL NULL [NULL
in root, store up-tree e
Size as negative value
in root node
+ Why not positive Q o
value?
< Would not know if
array entry issize or e 1

parent pointer

0 1(@ 2(b) 3(c) 4(d) 5(e) 6(f) 7(9) 8(h)

Artayup: | - |51 |-2|1]|2|3]|1]-1

R. Rao, CSE 373 17

Union-by-Size Code

void Union(DisjSet up, int X, int Y)
{
//X, Y are roots
//containing (-size) of up-trees
assert (up[X] < 0);
assert (up[Y] < 0);

if (-up[X] > -upl¥l) {
//update size of X and root of Y
up [X] += uplY¥];

up [Y] = X;

}

else { //size of X < size of ¥
up[¥] += uplX]; New run time of Union=?
up [X] = ¥; . .

} New run time of Find = ?

}

R. Rao, CSE 373 18

Union-by-Size: Analysis

+ Finds are O(max up-tree height) for aforest of up-trees

containing N nodes

+ Number of nodesin an up-tree of height h using union-by-size

is>2h ‘

+ Pick up-tree with
max height

+ Then, 2max height < N
+ max height<log N
+ Find takes O(log N)

R. Rao, CSE 373

Base case: h =0, tree has 2° = 1 node
Induction hypothesis: Assume true for h< h’

Induction Step: New tree of height h” was
formed via union of two trees of height h’-1
Each tree then has > 21 nodes by the
induction hypothesis

So, total nodes > 21 + 21 = 2

- Truefor al h

19

Union-by-Height

+ Textbook describes alternative strategy of Union-by-height

+ Keep track of height of each up-treein the root nodes

+ Union makes root of up-tree with greater height the new root

+ Same results and similar implementation as Union-by-Size
< FindisO(log N) and Unionis O(1)

R. Rao, CSE 373

20

Speeding Up Find: Path Compression

+ If wedo M Finds on same element - O(M log N) time
< Can we modify Find to have side-effects so that next Find will be faster?

+ Path Compression: Point everything along path of a Find to root

+ Reduces height of entire access path to 1: Finds get faster!
< Dgavu? Ideasimilar to the one behind your old friend — splay tree...

500 = 550

Path compression!

R. Rao, CSE 373 21

A P.C. example with more meat...

Find(e)

R. Rao, CSE 373 22

How to P.C. — Path Compression Code

int Find(int X, DisjSet up)
{ // Assumes X = Hash(X Element)
// X _Element could be str/char etc.

if (up[X] <= 0) // Root
return X; //Return root = set name

else

//Find parent
return up([X] = Find(up[X], up); <+— Make dl nOde.Salong
) access path point to root

* Trivial modification of original Find
* New running time of Find = ?

R. Rao, CSE 373 23

How to P.C. — Path Compression Code

int Find(int X, DisjSet up)
{ // Assumes X = Hash(X Element)
// X _Element could be str/char etc.

if (up[X] <= 0) // Root
return X; //Return root = set name

else

//Find parent K
return up[X] = Find(up[X], up); <+— CO”apSI ng the tree by
} poi nti ng to root

* Find till takes O(max up-tree height) worst case
 But what happens to the tree heights over time?
» What isthe amortized run time of Find if we do M Finds?

R. Rao, CSE 373 24

Anaysis of P.C. with Union-by-Size

+ R E. Tarjan (of the up-trees fame) showed that:
< When both P.C. and Union-by-Size are used, the worst case
run time for a sequence of M operations (Unions or Finds) is
oM o(M,N))

+ What iso(M,N)?
< oM,N) istheinverse of Ackermann’sfunction

+ What is Ackermann’ s function?

R. Rao, CSE 373 25

Digression: Them slow-growing functions...

+ How fast doeslog N grow? logN =4for N =16 =24
< Grows quite slowly

+ Letlog® N =log (log (log ... (log N))) (klogs)
+ Letlog® N = minimum k such that log® N < 1

2
+ How fast doeslog” N grow? log" N =4 for N = 65536 = 22
< Grows very slowly

2

+ Ackermann created areally explosive function A(i, j) whose
inverse oM, N) grows very, very slowly (slower than log™ N)

+ How slow does a(M, N) grow? oM, N) =4 for M (= N) far
larger than the number of atoms in the universe (2300)!!

R. Rao, CSE 373 26

Analysis of P.C. with Union-by-Size

+ R E. Tarjan (of the up-trees fame) showed that:
< When both P.C. and Union-by-Size are used, the worst
case run time for a sequence of M operations (Unions or
Finds) is®(M o(M,N))
< oM, N) < 4for al practica choicesof M and N

+ Textbook proves weaker result of O(M log* N) time
< 7 pagesand 8 Lemmas! (Check it out but no need to know the proof)

+ Amortized run time per operation = total time/(# operations)
=0O(M o(M,N))/M =O(a(M,N)) = ©(1) for al practical
purposes (constant time!)

R. Rao, CSE 373 27

Summary of Digoint Set and Union/Find

+ Digoint Set data structure arises in many applications where
objects of interest fall into different equivalence classes or sets
< Citieson amap, electrical components on chip, computersin a
network, people related to each other by blood, etc.

+ Two main operations. Union of two classes and Find class
name for a given element

+ Up-Tree data structure allows efficient array implementation
< Unionstake O(1) worst case time, Finds can take O(N)
< Union-by-Size reduces worst case time for Find to O(log N)
< Union-by-Size plus Path Compression alows further speedup
» Any sequence of M Union/Find operations resultsin O(1)
amortized time per operation (for all practical purposes)
R. Rao, CSE 373 28

Next Class. CSE 373 gets graphic...
(Algo-rhythms on Graphs)

To Do:
Finish Homework #4 (due next class)
Finish reading chapter 8
Start reading chapter 9

R. Rao, CSE 373

29

