- The Plot:

\Rightarrow A new problem: Dynamic Equivalence
\Rightarrow The setting:
- Motivation and Definitions
\Rightarrow The players:
- Union and Find, two ADT operations
- Up-tree data structure
\Rightarrow Suspense-filled cliffhanger (to be continued...next time)
- Covered in Chapter 8 of the textbook
R. Rao, CSE 373 Some of the material on these slides are courtesy of: S. Wolfman, CSE 326, $2000 \quad 1$

Motivation

- Consider the relation " $=$ " between integers

1. For any integer $\mathrm{A}, \mathrm{A}=\mathrm{A}$
2. For integers A and $\mathrm{B}, \mathrm{A}=\mathrm{B}$ means that $\mathrm{B}=\mathrm{A}$
3. For integers A, B, and $\mathrm{C}, \mathrm{A}=\mathrm{B}$ and $\mathrm{B}=\mathrm{C}$ means that $\mathrm{A}=\mathrm{C}$

- Consider cities connected by two-way roads

1. A is trivially connected to itself
2. A is connected to B means B is connected to A
3. If A is connected to B and B is connected to C , then A is connected to C

- Consider electrical connections between components on a computer chip
$\Rightarrow 1,2$, and 3 are again satisfied

Equivalence Relations

- An equivalence relation R obeys three properties:

1. reflexive: for any $x, x \mathrm{R} x$ is true
2. symmetric: for any x and $y, x \mathrm{R} y$ implies $y \mathrm{R} x$
3. transitive: for any x, y, and $z, x \mathrm{R} y$ and $y \mathrm{R} z$ implies $x \mathrm{R} z$

- Preceding relations are all examples of equivalence relations
- What are not equivalence relations?

Equivalence Relations

- An equivalence relation R obeys three properties:

1. reflexive: for any $x, x \mathrm{R} x$ is true
2. symmetric: for any x and $y, x \mathrm{R} y$ implies $y \mathrm{R} x$
3. transitive: for any x, y, and $z, x \mathrm{R} y$ and $y \mathrm{R} z$ implies $x \mathrm{R} z$

- Preceding relations are all examples of equivalence relations
- What are not equivalence relations?
\Rightarrow What about "<" on integers? (1 and 2 are violated)
\Rightarrow What about " \leq " on integers? (2 is violated)
\Rightarrow What about "is having an affair with" in a soap opera?
- Victor i.h.a.a.w. Ashley i.h.a.a.w. Brad does not imply

Victor i.h.a.a.w. Brad

Equivalence Classes and Disjoint Sets

- The operator R divides all the elements into disjoint sets of "equivalent" items
\rightarrow Let \sim be an equivalence relation. Then, if $\mathrm{A} \sim \mathrm{B}$, then A and B are in the same equivalence class.
- Examples:
\Rightarrow On a computer chip, if \sim denotes "electrically connected," then sets of connected components form equivalence classes
\Rightarrow On a map, cites that have two-way roads between them form equivalence classes
\Rightarrow The relation "Modulo N " divides all integers in N equivalence classes
- E.g. Under Mod 5, $\underline{0} \sim 5 \sim 10 \sim 15 \ldots, \underline{1} \sim 6 \sim 11 \sim 16 \ldots, \underline{2} \sim 7 \sim$ $12 \sim \ldots, \underline{3} \sim 8 \sim 13 \sim \ldots$, and $\underline{4} \sim 9 \sim 14 \sim \ldots$
- 5 equivalence classes (remainders 0 through 4 when divided by 5)

Problem Definition

- Given a set of elements and some equivalence relation ~ between them, we want to figure out the equivalence classes
- Given an element, we want to find the equivalence class it belongs to
\Rightarrow E.g. Under mod 5,13 belongs to the equivalence class of 3
\Rightarrow E.g. For the map example, want to find the equivalence class of Redmond (all the cities it is connected to)
- Given a new element, want to add it to an equivalence class (union)
\Rightarrow E.g. Under mod 5, since $18 \sim 13$, perform a union of 18 with equivalence class of 13
\Rightarrow E.g. For the map example, Woodinville is connected to Redmond, so add Woodinville to equivalence class of Redmond

Disjoint Set ADT

- Stores N unique elements
- Two operations:
\Rightarrow Find: Given an element, return the name of its equivalence class
\Rightarrow Union: Given the names of two equivalence classes, merge them into one class (which may have a new name or one of the two old names)
- ADT divides elements into E equivalence classes, $1 \leq \mathrm{E} \leq \mathrm{N}$
\Rightarrow Names of classes are arbitrary e.g. 1 through N, so long as Find returns the same name for 2 elements in the same equivalence class

Disjoint Set ADT Properties

- Disjoint set equivalence property: every element of a DS ADT belongs to exactly one set (its equivalence class)
- Dynamic equivalence property: the set of an element can change after execution of a union

Formal Definition (for Math lovers' eyes only)

- Given a set $U=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$
- Maintain a partition of U, a set of subsets (or equivalence classes) of U denoted by $\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ such that:
\Rightarrow each pair of subsets S_{i} and S_{j} are disjoint: $S_{i} \cap S_{j}=\varnothing$
\Rightarrow together, the subsets cover $U: U=\bigcup_{i=1}^{k} S_{i}$
\Rightarrow each subset has a unique name
- Union(a, b) creates a new subset which is the union of a's subset and b's subset
- Find(a) returns a unique name for a's subset

Implementation Ideas and Tradeoffs

\checkmark How about an array implementation?
$\Rightarrow \mathrm{N}$ element array $\mathrm{A} \rightarrow \mathrm{A}[\mathrm{i}]$ holds the class name for element i
\Rightarrow E.g. if $18 \sim 3$, pick 3 as class name and set $\mathrm{A}[18]=\mathrm{A}[3]=3$
\Rightarrow Running time for $\operatorname{Find}(\mathrm{i})=$? $\quad(\mathrm{i}=$ some element $)$
\Rightarrow Running time for Union $(\mathrm{i}, \mathrm{j})=$? (i and j are class names)

Implementation Ideas and Tradeoffs

- How about an array implementation?
$\Rightarrow \mathrm{N}$ element array $\mathrm{A} \rightarrow \mathrm{A}[\mathrm{i}]$ holds the class name for element i
\Rightarrow E.g. if $18 \sim 3$, pick 3 as class name and set $\mathrm{A}[18]=\mathrm{A}[3]=3$
\Rightarrow Running time for $\operatorname{Find}(\mathrm{i})=\mathrm{O}(1)$ (just return $\mathrm{A}[\mathrm{i}]$)
\Rightarrow Running time for $\operatorname{Union}(\mathrm{i}, \mathrm{j})=\mathrm{O}(\mathrm{N})$
- If first $\mathrm{N} / 2$ elements have class name 1 and next $\mathrm{N} / 2$ have class name 2, Union $(1,2)$ will need to change class names of N/2 items
- How about linked lists?
\Rightarrow One linked list for each class
\Rightarrow Running time for $\operatorname{Union}(\mathrm{i}, \mathrm{j})$ and $\operatorname{Find}(\mathrm{i})=$?

Implementation Ideas and Tradeoffs

\checkmark How about an array implementation?
$\Rightarrow \mathrm{N}$ element array $\mathrm{A} \rightarrow \mathrm{A}[\mathrm{i}]$ holds the class name for element i
\Rightarrow E.g. if $18 \sim 3$, pick 3 as class name and set $\mathrm{A}[18]=\mathrm{A}[3]=3$
\Rightarrow Running time for $\operatorname{Find}(\mathrm{i})=\mathrm{O}(1)$ (just return $\mathrm{A}[\mathrm{i}]$)
\Rightarrow Running time for $\operatorname{Union}(\mathrm{i}, \mathrm{j})=\mathrm{O}(\mathrm{N})$

- How about linked lists?
\Rightarrow One linked list for each class
\Rightarrow Running time for $\operatorname{Union}(\mathrm{i}, \mathrm{j})=\mathrm{O}(1)$ (just append one list to the other)
\Rightarrow Running time for Find(i) $=\mathrm{O}(\mathrm{N}) \quad$ (must scan all lists in worst case)
- Tradeoff between Union-Find - cannot do both in $\mathrm{O}(1)$ time $\Rightarrow \mathrm{N}-1$ Unions (the max) and M Finds $\rightarrow \mathrm{O}\left(\mathrm{M}+\mathrm{N}^{2}\right)$ or $\mathrm{O}(\mathrm{N}+\mathrm{MN})$
\Rightarrow Can we do this in $\mathrm{O}(\mathrm{M}+\mathrm{N})$ time? We will answer this question in this class and next...but first...
R. Rao, CSE 373

Let's find a new Data Structure

- Intuition: Finding the representative member (= class name) of a set is like the opposite of finding a key in a given set
- So, instead of trees with pointers from each node to its children, let's use trees with a pointer from each node to its parent
- Such trees are known as Up-Trees

Up-Tree Data Structure

- Each equivalence class (or discrete set) is an up-tree with its root as its representative member
- All members of a given set are nodes in that set's uptree
- Hash table maps input data to the node associated with that data e.g. input string \rightarrow integer
R. Rao, CSE 373

Example of Find

Find: Just traverse to the root!

Example of Union

Union: Just hang one root from the other!

To be continued next class...
(same place, same time)

> Meanwhile...

Finish reading chapter 8

