CSE 373 Lecture 19: Wrap-Up of Sorting

- ♦ What's on our platter today?
 - ⇒ How fast can the fastest sorting algorithm be?
 - ▶ Lower bound on comparison-based sorting
 - Tricks to sort faster than the lower bound
 - Sexternal versus Internal Sorting
 - ❖ Practical comparisons of internal sorting algorithms
 - Summary of sorting
- ◆ Covered in Chapter 7 of the textbook

R. Rao, CSE 373

How fast can we sort?

- ◆ Heapsort, Mergesort, and Quicksort all run in O(N log N) best case running time
- ◆ Can we do any better?
- ◆ Can we believe Pat Swe (pronounced "Sway") from Swetown (formerly Softwareville), USA, who claims to have discovered an $O(N \log \log N)$ sorting algorithm?

R. Rao, CSE 373

The Answer is No! (if using comparisons only)

- ◆ Recall our basic assumption: we can <u>only compare two</u> <u>elements at a time</u> – how does this limit the run time?
- ◆ Suppose you are given N elements
 - Assume no duplicates any sorting algorithm must also work for this
- ♦ How many possible orderings can you get?
 - \Rightarrow Example: a, b, c (N = 3)

The Answer is No! (if using comparisons only)

- ◆ Recall our basic assumption: we can only compare two elements at a time – how does this limit the run time?
- ◆ Suppose you are given N elements Assume no duplicates – any sorting algorithm must also work for this
- → How many possible orderings can you get?
 ⇒ Example: a, b, c (N = 3)
 ⇒ Orderings: 1. a b c 2. b c a 3. c a b 4. a c b 5. b a c 6. c b a

 - 6 orderings = 3.2.1 = 3!

N choices (N-1) choices ◆ For N elements: √ √ _ ... _ = N! orderings

Decision Trees and Sorting

- ◆ A Decision Tree is a Binary Tree such that:
 - ⇒ Each node = a set of orderings
 ⇒ Each edge = 1 comparison

 - ⇒ Each leaf = 1 unique ordering
 - ⇒ How many leaves for N distinct elements?
- ◆ Only 1 leaf has sorted ordering
- ◆ Each sorting algorithm corresponds to a decision tree Finds correct leaf by following edges (= comparisons)
- ◆ Run time ≥ maximum no. of comparisons
 - Depends on: depth of decision tree
 - ❖ What is the depth of a decision tree for N distinct elements?

R. Rao, CSE 373

Lower Bound on Comparison-Based Sorting

- ◆ Suppose you have a binary tree of depth d . How many leaves can the tree have?
 - \Rightarrow E.g. depth d = 1 \rightarrow at most 2 leaves, d = 2 \rightarrow at most 4 leaves, etc.

Lower Bound on Comparison-Based Sorting

- A binary tree of <u>depth d</u> has <u>at most 2^d leaves</u>
 - ⇒ E.g. depth $d = 1 \rightarrow 2$ leaves, $d = 2 \rightarrow 4$ leaves, etc. ⇒ Can prove by induction
- ♦ Number of leaves $L \le 2^d \rightarrow d \ge \log L$
- ◆ Decision tree has L = N! leaves → its depth $d \ge log(N!)$ $\ \, \mbox{$\diamondsuit$ What is log(N!)?$} \quad \mbox{(first, what is log(A-B)?)}$

Lower Bound on Comparison-Based Sorting

◆ Decision tree has L = N! leaves → its depth $d \ge log(N!)$

 $\geq (N/2) \cdot \log(N/2) = \Omega(N \log N)$

- \Rightarrow What is $\log(N!)$? (first, what is $\log(A \cdot B)$?)
- $\geq \log N + \log(N-1) + \dots \log(N/2)$ (N/2 terms only)
- ◆ Result: Any sorting algorithm based on comparisons between elements requires $\Omega(N log N)$ comparisons
 - \Rightarrow Run time of any comparison-based sorting algorithm is $\Omega(N)$ log N)
 - ❖ Can never get an O(N log log N) algorithm (sorry, Pat Swe!)

R. Rao, CSE 373

Hey! (you say)...what about Bucket Sort?

- Recall: Bucket sort → Elements are integers known to always be in the range 0 to B-1
 - ⇒ Idea: Array Count has B slots ("buckets")
 - 1. Initialize: Count[i] = 0 for i = 0 to B-1

 - Given input integer i, Count[i]++After reading all inputs, scan Count[i] for i=0 to B-1 and print i if Count[i] is non-zero
- ♦ What is the running time for sorting N integers?

R. Rao, CSE 373

Hey! (you say)...what about Bucket Sort?

- Recall: Bucket sort → Elements are integers known to always be in the range 0 to B-1
 - Idea: Array Count has B slots ("buckets") 1. Initialize: Count[i] = 0 for i = 0 to B-1
 - If input integer = i, Count[i]++
 - After reading all inputs, scan Count[i] for i=0 to B-1; print i if Count[i] $\neq 0 \rightarrow$ sorted output
- What is the running time for sorting N integers?
 - Running Time: O(B+N) [B to zero/scan the array and N to read the
 - \Rightarrow If B is $\Theta(N)$, then running time for Bucket sort = O(N)
- Doesn't this violate the O(N log N) lower bound result??
- No When we do Count[i]++, we are comparing one element with all B elements, not just two elements

Radix Sort = Stable Bucket Sort

- ◆ Problem: What if number of buckets needed is too large?
- ◆ Recall: Stable sort = a sort that does not change order of items with same key
- ◆ Radix sort = stable bucket sort on "slices" of key
 - Section E.g. Divide into integers/strings in digits/characters
 - ⇒ Bucket-sort from <u>least significant to most significant</u> digit/character
 - Stability ensures keys already sorted stay sorted
 - \Rightarrow Takes O(P(B+N)) time where P = number of digits

R. Rao, CSE 373 12

Internal versus External Sorting

- ◆ So far assumed that accessing A[i] is fast Array A is stored in internal memory (RAM)
 - Algorithms so far are good for internal sorting
- ◆ What if A is so large that it doesn't fit in internal memory?
 - Data on disk or tape
 - ⇒ Delay in accessing A[i] e.g. need to spin disk and move head
- ◆ Need sorting algorithms that minimize disk/tape access time
 - ⇒ External sorting Basic Idea:
 - ▶ Load chunk of data into RAM, sort, store this "run" on disk/tape ▶ Use the Merge routine from Mergesort to merge runs

 - ▶ Repeat until you have only one run (one sorted chunk)
 - ▶ Text gives some examples
- ◆ Waittaminute!! How important is external sorting?

R. Rao, CSE 373

14

Internal Memory is getting dirt cheap...

External Sorting: A (soon-to-be) Relic of the Past?

- ◆ Price of internal memory is dropping, memory size is increasing, both at exponential rates (Moore's law)
- ◆ Quite likely that in the future, data will probably fit in internal memory for reasonably large input sizes
- ◆ Tapes seldom used these days disks are faster and getting cheaper with greater capacity
- ◆ So, need not worry too much about external sorting
- ◆ For all practical purposes, internal sorting algorithms such as Quicksort should prove to be efficient

R. Rao, CSE 373 16

Summary of Sorting

- Sorting choices:

 - $\stackrel{\Rightarrow}{\circ} O(N^2) \text{Bubblesort, Selection Sort, Insertion Sort}$ $\stackrel{\Rightarrow}{\circ} O(N^3) \text{Shellsort } (x = 3/2, 4/3, 7/6, 2, \text{ etc. depending on increment sequence})$ ⇒ O(N log N) average case running time:
 - Heapsort: uses 2 comparisons to move data (between children and between child and parent) may not be fast in practice (see graph)
 Mergesort: easy to code but uses O(N) extra space
 - $\mbox{$ igspace{1.5mm} $ Quicksort:$ fastest in practice but trickier to code, $O(N^2)$ worst case }$
- ◆ Practical advice: When N is large, use Quicksort with median-of-three pivot. For small N (< 20), the N log N sorts are slower due to extra overhead (larger constants in big-oh notation)
 ⇒ For N < 20, use Insertion sort
 ⇒ E.g. In Quicksort, do insertion sort when sub-array size < 20 (instead of partitioning) and return this sorted sub-array for further processing

R. Rao, CSE 373

Next time: Union-Find and Disjoint Sets

To do:

Finish reading chapter 7 Start reading chapter 8

Have a great weekend!

R. Rao, CSE 373

19