CSE 373 Lecture 19: Wrap-Up of Sorting

- What's on our platter today?
\Rightarrow How fast can the fastest sorting algorithm be? - Lower bound on comparison-based sorting
\Rightarrow Tricks to sort faster than the lower bound
\Rightarrow External versus Internal Sorting
\Rightarrow Practical comparisons of internal sorting algorithms
\Rightarrow Summary of sorting
- Covered in Chapter 7 of the textbook
R. Rao, CSE 373

How fast can we sort?

- Heapsort, Mergesort, and Quicksort all run in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ best case running time
- Can we do any better?
- Can we believe Pat Swe (pronounced "Sway") from Swetown (formerly Softwareville), USA, who claims to have discovered an $\mathrm{O}(\mathrm{N} \log \log \mathrm{N})$ sorting algorithm?

The Answer is No! (if using comparisons only)

- Recall our basic assumption: we can only compare two elements at a time - how does this limit the run time?
- Suppose you are given N elements
\Rightarrow Assume no duplicates - any sorting algorithm must also work for this case
\uparrow How many possible orderings can you get?
\Rightarrow Example: $\mathrm{a}, \mathrm{b}, \mathrm{c}(\mathrm{N}=3)$

The Answer is No! (if using comparisons only)
\uparrow Recall our basic assumption: we can only compare two elements at a time - how does this limit the run time?

- Suppose you are given N elements
\Rightarrow Assume no duplicates - any sorting algorithm must also work for this case
- How many possible orderings can you get?
\Rightarrow Example: a, b, c ($\mathrm{N}=3$)
\Rightarrow Orderings: 1.abc 2.bca 3.cab 4.acb 5.bac 6.cba
$\Rightarrow 6$ orderings $=3 \cdot 2 \cdot 1=3$
 $=\mathrm{N}$! orderings

Decision Trees and Sorting

- A Decision Tree is a Binary Tree such that: \Rightarrow Each node $=$ a set of orderings
\Rightarrow Each edge $=1$ comparison
\Rightarrow Each leaf $=1$ unique ordering
\Rightarrow How many leaves for N distinct elements?
- Only 1 leaf has sorted ordering
- Each sorting algorithm corresponds to a decision tree \Rightarrow Finds correct leaf by following edges (= comparisons)
- Run time \geq maximum no. of comparisons
\Rightarrow Depends on: depth of decision tree
\Rightarrow What is the depth of a decision tree for N distinct elements?

Lower Bound on Comparison-Based Sorting

\rightarrow Suppose you have a binary tree of depth d. How many leaves can the tree have?
\Rightarrow E.g. depth $\mathrm{d}=1 \rightarrow$ at most 2 leaves, $\mathrm{d}=2 \rightarrow$ at most 4 leaves, etc.

Lower Bound on Comparison-Based Sorting

- A binary tree of depth d has at most 2^{d} leaves
\Rightarrow E.g. depth $\mathrm{d}=1 \rightarrow 2$ leaves, $\mathrm{d}=2 \rightarrow 4$ leaves, etc.
\Rightarrow Can prove by induction
- Number of leaves $L \leq 2^{d} \rightarrow \mathbf{d} \geq \log \mathbf{L}$
- Decision tree has $\mathrm{L}=\mathrm{N}$! leaves \rightarrow its depth $\mathrm{d} \geq \log (\mathrm{N}$!) \Rightarrow What is $\log (\mathrm{N}!)$? (first, what is $\log (\mathrm{A} \cdot \mathrm{B})$?)

Lower Bound on Comparison-Based Sorting

\rightarrow Decision tree has $\mathrm{L}=\mathrm{N}$! leaves \rightarrow its depth $\mathrm{d} \geq \log (\mathrm{N}!)$ \Rightarrow What is $\log (\mathrm{N}!)$? (first, what is $\log (\mathrm{A} \cdot \mathrm{B})$?)
$\Rightarrow \log (\mathrm{N}!)=\log \mathrm{N}+\log (\mathrm{N}-1)+\ldots \log (\mathrm{N} / 2)+\ldots+\log 1$ $\geq \log \mathrm{N}+\log (\mathrm{N}-1)+\ldots \log (\mathrm{N} / 2) \quad$ (N/2 terms only) $\geq(\mathrm{N} / 2) \cdot \log (\mathrm{N} / 2)=\boldsymbol{\Omega}(\mathbf{N} \log \mathbf{N})$

- Result: Any sorting algorithm based on comparisons between elements requires $\boldsymbol{\Omega}(\mathbf{N} \log \mathbf{N})$ comparisons
\Rightarrow Run time of any comparison-based sorting algorithm is $\boldsymbol{\Omega}(\mathbf{N}$ $\boldsymbol{\operatorname { l o g }} \mathrm{N}$)
\Rightarrow Can never get an $\mathrm{O}(\mathrm{N} \log \log \mathrm{N})$ algorithm (sorry, Pat Swe!)
R. Rao, CSE 373

Hey! (you say)...what about Bucket Sort?

- Recall: Bucket sort \rightarrow Elements are integers known to always be in the range 0 to $\mathrm{B}-1$
\Rightarrow Idea: Array Count has B slots ("buckets")

1. Initialize: Count $[\mathrm{i}]=0$ for $\mathrm{i}=0$ to $\mathrm{B}-1$
2. Given input integer i, Count $[\mathrm{i}]++$
3. After reading all inputs, scan Count[i$]$ for $\mathrm{i}=0$ to $\mathrm{B}-1$ and print i if Count $[\mathrm{i}]$ is non-zero

- What is the running time for sorting N integers?

Hey! (you say)...what about Bucket Sort?

- Recall: Bucket sort \rightarrow Elements are integers known to always be in the range 0 to B-1
Idea: Array Count has B slots ("buckets")

1. Initialize: Count $[\mathrm{i}]=0$ for $\mathrm{i}=0$ to $\mathrm{B}-1$
2. If input integer $=\mathrm{i}, \mathrm{Count}[\mathrm{i}]++$
3. After reading all inputs, scan Count $[\mathrm{i}]$ for $\mathrm{i}=0$ to $\mathrm{B}-1$; print i if Count $[i] \neq 0 \rightarrow$ sorted output

- What is the running time for sorting N integers?
\Rightarrow Running Time: $\mathrm{O}(\mathrm{B}+\mathrm{N})$ [B to zero/scan the array and N to read the input]
\Rightarrow If B is $\Theta(N)$, then running time for Bucket sort $=\mathbf{O}(\mathbf{N})$
\Rightarrow Doesn't this violate the $\mathbf{O}(\mathbb{N} \log \mathrm{N})$ lower bound result??
- No - When we do Count[i]++, we are comparing one element with all B elements, not just two elements
R. Rao, CSE 373

Radix Sort = Stable Bucket Sort

- Problem: What if number of buckets needed is too large?
- Recall: Stable sort $=$ a sort that does not change order of items with same key
- Radix sort $=$ stable bucket sort on "slices" of key
\Rightarrow E.g. Divide into integers/strings in digits/characters
\Rightarrow Bucket-sort from least significant to most significant digit/character
$>$ Stability ensures keys already sorted stay sorted
\Rightarrow Takes $\mathrm{O}(\mathrm{P}(\mathrm{B}+\mathrm{N})$) time where $\mathrm{P}=$ number of digits

Radix Sort Example

478	Bucket sort 1's digit	721	Bucket sort 10's digit	$\underline{0}$	Bucket sort 100's digit	$\underline{0} 03$
537		$\underline{3}$		$\underline{0} 9$		009
9		123		721		$\underline{0} 38$
721		537		123		067
3		67		$5 \underline{37}$		123
38		478		$\underline{3} 8$		478
123		$3 \underline{8}$		$\underline{67}$		$\underline{5} 37$
67		$\underline{9}$		4ㄱ8		721

Internal versus External Sorting

- So far assumed that accessing A[i] is fast - Array A is stored in internal memory (RAM)
\Rightarrow Algorithms so far are good for internal sorting
- What if A is so large that it doesn't fit in internal memory?
\Rightarrow Data on disk or tape
\Rightarrow Delay in accessing $\mathrm{A}[\mathrm{i}]$ - e.g. need to spin disk and move head
- Need sorting algorithms that minimize disk/tape access time
\Rightarrow External sorting - Basic Idea:
"Load chunk of data into RAM, sort, store this "run" on disk/tape
* Use the Merge routine from Mergesort to merge runs
- Repeat until you have only one run (one sorted chunk)
- Text gives some examples
- Waittaminute!! How important is external sorting?
R. Rao, CSE 373

External Sorting: A (soon-to-be) Relic of the Past?

- Price of internal memory is dropping, memory size is increasing, both at exponential rates (Moore's law)
- Quite likely that in the future, data will probably fit in internal memory for reasonably large input sizes
- Tapes seldom used these days - disks are faster and getting cheaper with greater capacity
- So, need not worry too much about external sorting
- For all practical purposes, internal sorting algorithms such as Quicksort should prove to be efficient

Summary of Sorting

- Sorting choices:
$\Rightarrow \mathrm{O}\left(\mathrm{N}^{2}\right)$ - Bubblesort, Selection Sort, Insertion Sort
$\Rightarrow \mathrm{O}\left(\mathrm{N}^{\mathrm{x}}\right)$ - Shellsort ($\mathrm{x}=3 / 2,4 / 3,7 / 6,2$, etc. depending on increment sequence)
$\Rightarrow \mathrm{O}(\mathrm{N} \log \mathrm{N})$ average case running time:
- Heapsort: uses 2 comparisons to move data (between children and between child and parent) - may not be fast in practice (see graph)
- Mergesort: easy to code but uses $\mathrm{O}(\mathrm{N})$ extra space

Quicksort: fastest in practice but trickier to code, $\mathrm{O}\left(\mathrm{N}^{2}\right)$ worst case

- Practical advice: When N is large, use Quicksort with median-of-three pivot. For small $\mathrm{N}(<20)$, the $\mathrm{N} \log \mathrm{N}$ sorts are slower due to extra
overhead (larger constants in big-oh notation)
\Rightarrow For $\mathrm{N}<20$, use Insertion sort
\Leftrightarrow E.g. In Quicksort, do insertion sort when sub-array size < 20 (instead of partitioning) and return this sorted sub-array for further processing

Next time: Union-Find and Disjoint Sets

To do:
Finish reading chapter 7
Start reading chapter 8

Have a great weekend!

