CSE 373 Lecture 19: Wrap-Up of Sorting

✦ What’s on our platter today?
 ✦ How fast can the fastest sorting algorithm be?
 ✦ Lower bound on comparison-based sorting
 ✦ Tricks to sort faster than the lower bound
 ✦ External versus Internal Sorting
 ✦ Practical comparisons of internal sorting algorithms
 ✦ Summary of sorting

✦ Covered in Chapter 7 of the textbook

How fast can we sort?

✦ Heapsort, Mergesort, and Quicksort all run in O(N log N)
 best case running time
✦ Can we do any better?
✦ Can we believe Pat Swe (pronounced “Sway”) from
 Swetown (formerly Softwareville), USA, who claims to have
 discovered an O(N log log N) sorting algorithm?
The Answer is No! (if using comparisons only)

✦ Recall our basic assumption: we can only compare two elements at a time – how does this limit the run time?

✦ Suppose you are given N elements
 ✗ Assume no duplicates – any sorting algorithm must also work for this case

✦ How many possible orderings can you get?
 ✗ Example: a, b, c (N = 3)

✦ For N elements: \(\frac{N!}{1!} \) orderings
 \[N \text{ choices} \times (N-1) \text{ choices} \times \cdots \times 1 \text{ choice} \]

R. Rao, CSE 373
A “Decision Tree”

Leaves contain possible orderings of a, b, c

Decision Trees and Sorting

- A Decision Tree is a Binary Tree such that:
 - Each node = a set of orderings
 - Each edge = 1 comparison
 - Each leaf = 1 unique ordering
 - How many leaves for N distinct elements?

- Only 1 leaf has sorted ordering

- Each sorting algorithm corresponds to a decision tree
 - Finds correct leaf by following edges (= comparisons)

- Run time \geq maximum no. of comparisons
 - Depends on: depth of decision tree
 - What is the depth of a decision tree for N distinct elements?
Suppose you have a binary tree of depth d. How many leaves can the tree have?

- E.g. depth $d = 1 \rightarrow$ at most 2 leaves, $d = 2 \rightarrow$ at most 4 leaves, etc.

A binary tree of depth d has at most 2^d leaves

- E.g. depth $d = 1 \rightarrow$ 2 leaves, $d = 2 \rightarrow$ 4 leaves, etc.
- Can prove by induction

Number of leaves $L \leq 2^d \rightarrow d \geq \log L$

Decision tree has $L = N!$ leaves \rightarrow its depth $d \geq \log(N!)$

- What is $\log(N!)$? (first, what is $\log(A-B)$?)
Lower Bound on Comparison-Based Sorting

- Decision tree has \(L = N! \) leaves \(\Rightarrow \) its depth \(d \geq \log(N!) \)
 - What is \(\log(N!) \)? (first, what is \(\log(A \cdot B) \)?)
 - \(\log(N!) = \log N + \log(N-1) + \ldots \log(N/2) + \ldots + \log 1 \)
 \(\geq \log N + \log(N-1) + \ldots \log(N/2) \) (N/2 terms only)
 \(\geq (N/2) \cdot \log(N/2) = \Omega(N \log N) \)

- Result: Any sorting algorithm based on comparisons between elements requires \(\Omega(N \log N) \) comparisons
 - Run time of any comparison-based sorting algorithm is \(\Omega(N \log N) \)
 - Can never get an \(O(N \log \log N) \) algorithm (sorry, Pat Swe!)

Hey! (you say)…what about Bucket Sort?

- Recall: Bucket sort \(\Rightarrow \) Elements are integers known to always be in the range 0 to B-1
 - Idea: Array Count has B slots ("buckets")
 1. Initialize: Count\[i\] = 0 for \(i = 0 \) to B-1
 2. Given input integer \(i \), Count\[i\]++
 3. After reading all inputs, scan Count\[i\] for \(i = 0 \) to B-1 and print \(i \) if Count\[i\] is non-zero

- What is the running time for sorting N integers?
Hey! (you say)...what about Bucket Sort?

- Recall: Bucket sort ⇒ Elements are integers known to always be in the range 0 to B-1
 Idea: Array Count has B slots ("buckets")
 1. Initialize: Count[i] = 0 for i = 0 to B-1
 2. If input integer = i, Count[i]++
 3. After reading all inputs, scan Count[i] for i = 0 to B-1; print i if Count[i] ≠ 0 ⇒ sorted output

- What is the running time for sorting N integers?
 - Running Time: O(B+N) [B to zero/scan the array and N to read the input]
 - If B is Θ(N), then running time for Bucket sort = O(N)
 - Doesn’t this violate the O(N log N) lower bound result??

- No – When we do Count[i]++, we are comparing one element with all B elements, not just two elements

Radix Sort = Stable Bucket Sort

- Problem: What if number of buckets needed is too large?
- Recall: Stable sort = a sort that does not change order of items with same key

- Radix sort = stable bucket sort on “slices” of key
 - E.g. Divide into integers/strings in digits/characters
 - Bucket-sort from least significant to most significant digit/character
 - Stability ensures keys already sorted stay sorted
 - Takes O(P(B+N)) time where P = number of digits
Radix Sort Example

<table>
<thead>
<tr>
<th>478</th>
<th>721</th>
<th>03</th>
</tr>
</thead>
<tbody>
<tr>
<td>537</td>
<td>3</td>
<td>09</td>
</tr>
<tr>
<td>9</td>
<td>123</td>
<td>721</td>
</tr>
<tr>
<td>721</td>
<td>537</td>
<td>123</td>
</tr>
<tr>
<td>3</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>38</td>
<td>478</td>
<td>38</td>
</tr>
<tr>
<td>123</td>
<td>38</td>
<td>67</td>
</tr>
<tr>
<td>67</td>
<td>9</td>
<td>478</td>
</tr>
</tbody>
</table>

Internal versus External Sorting

✦ So far assumed that accessing A[i] is fast – Array A is stored in internal memory (RAM)
 ➲ Algorithms so far are good for internal sorting

✦ What if A is so large that it doesn’t fit in internal memory?
 ➲ Data on disk or tape
 ➲ Delay in accessing A[i] – e.g. need to spin disk and move head

✦ Need sorting algorithms that minimize disk/tape access time
 ➲ External sorting – Basic Idea:
 ✦ Load chunk of data into RAM, sort, store this “run” on disk/tape
 ✦ Use the Merge routine from Mergesort to merge runs
 ✦ Repeat until you have only one run (one sorted chunk)
 ✦ Text gives some examples

✦ Waitaminute!! How important is external sorting?
Internal Memory is getting dirt cheap…

From: http://www.macresource.com/mrp/ramwatch/trend.shtml

<table>
<thead>
<tr>
<th>Price (in US$) for 1 MB of RAM</th>
</tr>
</thead>
</table>

External Sorting: A (soon-to-be) Relic of the Past?

✦ Price of internal memory is dropping, memory size is increasing, both at exponential rates (Moore’s law)

✦ Quite likely that in the future, data will probably fit in internal memory for reasonably large input sizes

✦ Tapes seldom used these days – disks are faster and getting cheaper with greater capacity

✦ So, need not worry too much about external sorting

✦ For all practical purposes, internal sorting algorithms such as Quicksort should prove to be efficient
Okay…so let’s talk about performance in practice

![Graph showing runtime versus input size for different sorting algorithms: Insertion sort, Heapsort, Shellsort, and Quicksort.](data-from-textbook-chap-7)

Summary of Sorting

- **Sorting choices:**
 - $O(N^2)$ – Bubblesort, Selection Sort, Insertion Sort
 - $O(N^x)$ – Shellsort ($x = 3/2, 4/3, 7/6, 2$, etc. depending on increment sequence)
 - $O(N \log N)$ average case running time:
 - **Heapsort**: uses 2 comparisons to move data (between children and between child and parent) – may not be fast in practice (see graph)
 - **Mergesort**: easy to code but uses $O(N)$ extra space
 - **Quicksort**: fastest in practice but trickier to code, $O(N^2)$ worst case

- **Practical advice:** When N is large, use Quicksort with median-of-three pivot. For small $N (< 20)$, the $N \log N$ sorts are slower due to extra overhead (larger constants in big-oh notation)
 - For $N < 20$, use Insertion sort
 - E.g. In Quicksort, do insertion sort when sub-array size < 20 (instead of partitioning) and return this sorted sub-array for further processing
Next time: Union-Find and Disjoint Sets

To do:
Finish reading chapter 7
Start reading chapter 8

Have a great weekend!