CSE 373 Lecture 18: The Fastest Sorting Algorithm

- Today's topic: Quicksort - fastest known sorting algorithm in practice
\Rightarrow Algorithm description
\Rightarrow Example
\Rightarrow Partitioning in place during Quicksort
\Rightarrow Performance analysis
- Covered in Chapter 7 of the textbook
R. Rao, CSE 373

Quicksort Description

- Quicksort Algorithm:

1. Partition array into left and right sub-arrays such that:

- Elements in left sub-array < elements in right sub-array

2. Recursively sort left and right sub-arrays
3. Concatenate left and right sub-arrays with pivot in middle

- How to Partition the Array:

1. Choose an element from the array as the pivot
2. Move all elements < pivot into left sub-array and all elements $>$ pivot into right sub-array

- Pivot? One choice \rightarrow use first element in array

Partitioning In Place

- Hmmm...seems like we need an extra array for partitioning and concatenating left/right sub-arrays
\Rightarrow No!
- Algorithm for In Place Partitioning:

1. Swap pivot with last element \rightarrow swap pivot and $\mathrm{A}[\mathrm{N}-1]$
. Set pointers i and j to beginning and end of array
. Increment 1 until you hit an element $\mathrm{A}[1]>$ pivot
2. Decrement j until you hit an element $A[j]$ < pivot
3. Swap $A[i]$ and $A[j]$
4. Repeat until i and j cross (i exceeds or equals j)
5. Swap pivot (=A[N-1]) with A[i]

- On-Board Example: Partition in place:

R. Rao, CSE 373

Choosing the Pivot

```
* First Idea: Pick the first element in (sub-)array as pivot
\(\Rightarrow\) What if it is the smallest or largest
\(\diamond\) What if the array is sorted? How many recursive calls does quicksort make?
\(\begin{array}{lllll}9 & 16 & 4 & 15 & 2\end{array}\)
\(\begin{array}{lllll}2 & 16 & 4 & 15 & 9\end{array}\)
\(\begin{array}{llll}2 & 4 & 9 & 15\end{array}\)
```

$-2^{\text {nd }}$ Idea: Pick a random element
\Rightarrow Gets rid of asymmetry in left/right sizes
\Rightarrow But...requires calls to pseudo-random number generator - expensive/error-prone

- Third idea: Pick median (N/2 ${ }^{\text {th }}$ largest element)
\Rightarrow Hard to compute without sorting!
\Rightarrow Compromise: Pick median of three elements

Median-of-Three Pivot
\rightarrow Find the median of the first, middle and last element

- Takes only O(1) time and not error-prone like the pseudorandom pivot choice
- Less chance of poor performance as compared to looking at only 1 element
- For sorted inputs, splits array nicely in half each recursion \Rightarrow Good performance

Quicksort Performance Analysis

- Best Case Performance: Algorithm always chooses best pivot and keeps splitting sub-arrays in half at each recursion $\Rightarrow \mathrm{T}(0)=\mathrm{T}(1)=\mathrm{O}(1)$ (constant time if 0 or 1 element
\Rightarrow For $\mathrm{N}>1,2$ recursive calls plus linear time for partitioning
$\Rightarrow \mathrm{T}(\mathrm{N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{O}(\mathrm{N}) \quad($ Same recurrence relation as Mergesort) $\Rightarrow \mathrm{T}(\mathrm{N})=$?

Quicksort Performance Analysis
\rightarrow Best Case Performance: Algorithm always chooses best pivot and keeps splitting sub-arrays in half at each recursion $\Rightarrow \mathrm{T}(0)=\mathrm{T}(1)=\mathrm{O}(1)$ constant time if 0 or 1 element
\Rightarrow For $\mathrm{N}>1,2$ recursive calls plus linear time for partitioning
$\Rightarrow \mathrm{T}(\mathrm{N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{O}(\mathrm{N}) \quad$ (Same recurrence relation as Mergesort) $\Rightarrow \mathrm{T}(\mathrm{N})=\underline{\mathrm{O}(\mathrm{N} \log \mathrm{N})}$

- Worst Case Performance: What is the worst case?

Quicksort Performance Analysis

- Best Case Performance: Algorithm always chooses best pivot and keeps splitting sub-arrays in half at each recursion $\Rightarrow \mathrm{T}(0)=\mathrm{T}(1)=\mathrm{O}(1)$ and $\mathrm{T}(\mathrm{N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{O}(\mathrm{N})$
$\Rightarrow \mathrm{T}(\mathrm{N})=\underline{\mathrm{O}(\mathrm{N} \log \mathrm{N})}$
- Worst Case Performance: Algorithm keeps picking the worst pivot - one sub-array empty at each recursion $\Rightarrow \mathrm{T}(0)=\mathrm{T}(1)=\mathrm{O}(1)$
$\Rightarrow \mathrm{T}(\mathrm{N})=\mathrm{T}(\mathrm{N}-1)+\mathrm{O}(\mathrm{N})$
$\Rightarrow \mathrm{T}(\mathrm{N})=$?

Quicksort Performance Analysis

- Best Case Performance: Algorithm always chooses best pivot and keeps splitting sub-arrays in half at each recursion $\Rightarrow \mathrm{T}(0)=\mathrm{T}(1)=\mathrm{O}(1)$ and $\mathrm{T}(\mathrm{N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{O}(\mathrm{N})$ $\Rightarrow \mathrm{T}(\mathrm{N})=\underline{\mathrm{O}(\mathrm{N} \log \mathrm{N})}$
- Worst Case Performance: Algorithm keeps picking the worst pivot - one sub-array empty at each recursion
$\Leftrightarrow \mathrm{T}(0)=\mathrm{T}(1)=\mathrm{O}(1)$
$\Rightarrow \mathrm{T}(\mathrm{N})=\mathrm{T}(\mathrm{N}-1)+\mathrm{O}(\mathrm{N})$
$\Rightarrow \quad=\mathrm{T}(\mathrm{N}-2)+\mathrm{O}(\mathrm{N}-1)+\mathrm{O}(\mathrm{N})=\ldots=\mathrm{T}(0)+\mathrm{O}(1)+\ldots+\mathrm{O}(\mathrm{N})$ $\Rightarrow \mathrm{T}(\mathrm{N})=\underline{\mathrm{O}\left(\mathrm{N}^{2}\right)}$
- Fortunately, average case performance is $\underline{\mathrm{O}(\mathrm{N} \log \mathrm{N})}$ (see text for proof)
R. Rao, CSE 373

Can We Sort Any Faster?

- Heapsort, Mergesort, and Quicksort all run in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ best case running time
- Can we do any better?
- Can Joe Smartypants from Softwareville, USA come up with an $\mathrm{O}(\mathrm{N} \log \log \mathrm{N})$ sorting algorithm?

Answer in next class...

To do:
Finish reading chapter 7
Start reading chapter 8

