
1R. Rao, CSE 373

CSE 373 Lecture 18: The Fastest Sorting Algorithm

✦ Today’s topic: Quicksort – fastest known sorting
algorithm in practice
➭ Algorithm description
➭ Example
➭ Partitioning in place during Quicksort
➭ Performance analysis

✦ Covered in Chapter 7 of the textbook

2R. Rao, CSE 373

Quicksort Description

✦ Quicksort Algorithm:
1. Partition array into left and right sub-arrays such that:

➧ Elements in left sub-array < elements in right sub-array
2. Recursively sort left and right sub-arrays
3. Concatenate left and right sub-arrays with pivot in middle

✦ How to Partition the Array:
1. Choose an element from the array as the pivot
2. Move all elements < pivot into left sub-array and all elements

> pivot into right sub-array

✦ Pivot? One choice ! use first element in array

3R. Rao, CSE 373

Quicksort Example

✦ Sort the array containing:
9 16 4 15 2 5 17 1

Partition 4 2 5 1 9 16 15 17

2 1 4 5 15 16 17

1 2 5 15 17

1 2 4 5 15 16 17

Concatenate 1 2 4 5 9 15 16 17

< <

Partition

Concatenate

pivot

4R. Rao, CSE 373

Partitioning In Place

✦ Hmmm…seems like we need an extra array for partitioning
and concatenating left/right sub-arrays
➭ No!

✦ Algorithm for In Place Partitioning:
1. Swap pivot with last element ! swap pivot and A[N-1]
2. Set pointers i and j to beginning and end of array
3. Increment i until you hit an element A[i] > pivot
4. Decrement j until you hit an element A[j] < pivot
5. Swap A[i] and A[j]
6. Repeat until i and j cross (i exceeds or equals j)
7. Swap pivot (= A[N-1]) with A[i]

✦ On-Board Example: Partition in place:
➭ 9 16 4 15 2 5 17 1 (pivot = A[0] = 9)



5R. Rao, CSE 373

Choosing the Pivot

✦ First Idea: Pick the first element in
(sub-)array as pivot
➭ What if it is the smallest or largest?
➭ What if the array is sorted? How many

recursive calls does quicksort make?

✦ 2nd Idea: Pick a random element
➭ Gets rid of asymmetry in left/right sizes
➭ But…requires calls to pseudo-random

number generator – expensive/error-prone

✦ Third idea: Pick median (N/2th largest
element)
➭ Hard to compute without sorting!
➭ Compromise: Pick median of three

elements

9 16 4 15 2

2 16 4 15 9

2 4 9 15 16

6R. Rao, CSE 373

Median-of-Three Pivot

✦ Find the median of the first, middle and last element

✦ Takes only O(1) time and not error-prone like the pseudo-
random pivot choice

✦ Less chance of poor performance as compared to looking at
only 1 element

✦ For sorted inputs, splits array nicely in half each recursion
➭ Good performance

2 4 9 15 16

9

5 4 2 15 16

5

7R. Rao, CSE 373

Quicksort Performance Analysis

✦ Best Case Performance: Algorithm always chooses best
pivot and keeps splitting sub-arrays in half at each recursion
➭ T(0) = T(1) = O(1) (constant time if 0 or 1 element)
➭ For N > 1, 2 recursive calls plus linear time for partitioning
➭ T(N) = 2T(N/2) + O(N) (Same recurrence relation as Mergesort)
➭ T(N) = ?

8R. Rao, CSE 373

Quicksort Performance Analysis

✦ Best Case Performance: Algorithm always chooses best
pivot and keeps splitting sub-arrays in half at each recursion
➭ T(0) = T(1) = O(1) (constant time if 0 or 1 element)
➭ For N > 1, 2 recursive calls plus linear time for partitioning
➭ T(N) = 2T(N/2) + O(N) (Same recurrence relation as Mergesort)
➭ T(N) = O(N log N)

✦ Worst Case Performance: What is the worst case?



9R. Rao, CSE 373

Quicksort Performance Analysis

✦ Best Case Performance: Algorithm always chooses best
pivot and keeps splitting sub-arrays in half at each recursion
➭ T(0) = T(1) = O(1) and T(N) = 2T(N/2) + O(N)
➭ T(N) = O(N log N)

✦ Worst Case Performance: Algorithm keeps picking the worst
pivot – one sub-array empty at each recursion
➭ T(0) = T(1) = O(1)
➭ T(N) = T(N-1) + O(N)
➭ T(N) = ?

10R. Rao, CSE 373

Quicksort Performance Analysis

✦ Best Case Performance: Algorithm always chooses best
pivot and keeps splitting sub-arrays in half at each recursion
➭ T(0) = T(1) = O(1) and T(N) = 2T(N/2) + O(N)
➭ T(N) = O(N log N)

✦ Worst Case Performance: Algorithm keeps picking the worst
pivot – one sub-array empty at each recursion
➭ T(0) = T(1) = O(1)
➭ T(N) = T(N-1) + O(N)
➭ = T(N-2) + O(N-1) + O(N) = … = T(0) + O(1) + … + O(N)
➭ T(N) = O(N2)

✦ Fortunately, average case performance is O(N log N) (see
text for proof)

11R. Rao, CSE 373

Can We Sort Any Faster?

✦ Heapsort, Mergesort, and Quicksort all run in O(N log N)
best case running time

✦ Can we do any better?

✦ Can Joe Smartypants from Softwareville, USA come up with
an O(N log log N) sorting algorithm?

12R. Rao, CSE 373

Answer in next class…

To do:

Finish reading chapter 7

Start reading chapter 8


