CSE 373 Lecture 18: The Fastest Sorting Algorithm

✦ Today’s topic: Quicksort – fastest known sorting algorithm in practice
 ➢ Algorithm description
 ➢ Example
 ➢ Partitioning in place during Quicksort
 ➢ Performance analysis

✦ Covered in Chapter 7 of the textbook

Quicksort Description

✦ Quicksort Algorithm:
 1. Partition array into left and right sub-arrays such that:
 ♦ Elements in left sub-array < elements in right sub-array
 2. Recursively sort left and right sub-arrays
 3. Concatenate left and right sub-arrays with pivot in middle

✦ How to Partition the Array:
 1. Choose an element from the array as the pivot
 2. Move all elements < pivot into left sub-array and all elements > pivot into right sub-array

✦ Pivot? One choice ➔ use first element in array
QuickSort Example

- Sort the array containing:

 9 16 4 15 2 5 17 1

 Partition: 4 2 5 1 < 9 < 16 15 17

 Partition: 2 1 4 5

 1 2 5

 Concatenate: 1 2 4 5

 Concatenate: 9 15 16 17

Partitioning In Place

- Hmm... seems like we need an extra array for partitioning and concatenating left/right sub-arrays
 ⇒ No!

- Algorithm for In Place Partitioning:
 1. Swap pivot with last element ⇒ swap pivot and A[N-1]
 2. Set pointers i and j to beginning and end of array
 3. Increment i until you hit an element A[i] > pivot
 4. Decrement j until you hit an element A[j] < pivot
 5. Swap A[i] and A[j]
 6. Repeat until i and j cross (i exceeds or equals j)
 7. Swap pivot (= A[N-1]) with A[i]

- On-Board Example: Partition in place:
 ⇒ 9 16 4 15 2 5 17 1 (pivot = A[0] = 9)
Choosing the Pivot

✦ First Idea: Pick the first element in (sub-)array as pivot
 ➤ What if it is the smallest or largest?
 ➤ What if the array is sorted? How many recursive calls does quicksort make?

✦ 2nd Idea: Pick a random element
 ➤ Gets rid of asymmetry in left/right sizes
 ➤ But…requires calls to pseudo-random number generator – expensive/error-prone

✦ Third idea: Pick median (N/2th largest element)
 ➤ Hard to compute without sorting!
 ➤ Compromise: Pick median of three elements

Median-of-Three Pivot

✦ Find the median of the first, middle and last element

✦ Takes only O(1) time and not error-prone like the pseudo-random pivot choice

✦ Less chance of poor performance as compared to looking at only 1 element

✦ For sorted inputs, splits array nicely in half each recursion
 ➤ Good performance
Quicksort Performance Analysis

✦ Best Case Performance: Algorithm always chooses best pivot and keeps splitting sub-arrays in half at each recursion
 ➤ $T(0) = T(1) = O(1)$ (constant time if 0 or 1 element)
 ➤ For $N > 1$, 2 recursive calls plus linear time for partitioning
 ➤ $T(N) = 2T(N/2) + O(N)$ (Same recurrence relation as Mergesort)
 ➤ $T(N) = ?$

✦ Worst Case Performance: What is the worst case?
Quicksort Performance Analysis

✦ Best Case Performance: Algorithm always chooses best pivot and keeps splitting sub-arrays in half at each recursion
 ⇒ T(0) = T(1) = O(1) and T(N) = 2T(N/2) + O(N)
 ⇒ T(N) = O(N log N)

✦ Worst Case Performance: Algorithm keeps picking the worst pivot – one sub-array empty at each recursion
 ⇒ T(0) = T(1) = O(1)
 ⇒ T(N) = T(N-1) + O(N)
 ⇒ T(N) = ?

Fortunately, average case performance is O(N log N) (see text for proof)
Can We Sort Any Faster?

- Heapsort, Mergesort, and Quicksort all run in $O(N \log N)$ best case running time
- Can we do any better?
- Can Joe Smartypants from Softwareville, USA come up with an $O(N \log \log N)$ sorting algorithm?

Answer in next class…

To do:

Finish reading chapter 7
Start reading chapter 8