CSE 373 Lecture 17: More Sorting
\rightarrow Today's agenda:
\Rightarrow Midterm solutions (on board)
\Rightarrow The Fastest Sorting Algorithms:
Mergesort

- Quicksort
\leftrightarrow Covered in Chapter 7 of the textbook

Preorder Traversal with a Stack
void Stack_Preorder (Tree T, Stack S)
voi
if ($T==$ NULL) return; else push(T,S);
while (!isempty(S)) \{
$\mathrm{T}=\mathrm{pop}(\mathrm{S}) ;$
print_element(T -> Element);
if (T \rightarrow Right $!=$ NULL) push(T \rightarrow Right, S);
if (T -> Left ! = NULL) push(T -> Left, S) ;
\}
\}

Recall from Last Time: Mergesort

- Based on the idea of "Divide and Conquer":

1. Divide problem into smaller parts
2. Independently solve the parts
3. Combine these solutions to get overall solution

- Mergesort: Divide array into two halves, recursively sort left and right halves, then merge two halves
- Example: Mergesort the input array:

Mergesort Example

Mergesort Analysis

\rightarrow Let $\mathrm{T}(\mathrm{N})$ be the running time for an array of N elements

- Mergesort divides array in half and calls itself on the two halves. After returning, it merges both halves using a temporary array (see textbook for code).
- Each recursive call takes T(N/2) and merging takes O(N)
- Therefore, the recurrence relation for $\mathrm{T}(\mathrm{N})$ is:
$\Rightarrow \mathrm{T}(1)=\mathrm{O}(1)$ (base case: 1 element array \rightarrow constant time) $\Rightarrow \mathrm{T}(\mathrm{N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{N}$

Solving the Mergesort Recurrence Relation

- Can solve the recurrence by expanding the terms:
$\mathrm{T}(\mathrm{N})=2 * \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{N}$
\Rightarrow Since $\mathrm{T}(\mathrm{N} / 2)=2 * \mathrm{~T}(\mathrm{~N} / 4)+\mathrm{N} / 2$,
$\Rightarrow \mathrm{T}(\mathrm{N})=2 *[2 * \mathrm{~T}(\mathrm{~N} / 4)+\mathrm{N} / 2]+\mathrm{N}$
$=2^{2 *} \mathrm{~T}\left(\mathrm{~N} / 2^{2}\right)+2 * \mathrm{~N}$
$=2^{2}[2 * \mathrm{~T}(\mathrm{~N} / 8)+\mathrm{N} / 4]+2 * \mathrm{~N}$
$=2^{3 *} \mathrm{~T}\left(\mathrm{~N} / 2^{3}\right)+3^{*} \mathrm{~N}$
(recall that $2^{\log \mathrm{N}}=\mathrm{N}$)
$=2^{\log \mathrm{N}} * \mathrm{~T}\left(\mathrm{~N} / 2^{\log \mathrm{N}}\right)+(\log \mathrm{N}) * \mathrm{~N}$
$=\mathrm{N} * \mathrm{~T}(1)+\mathrm{N} \log \mathrm{N}$
$=\mathrm{N} * \mathrm{O}(1)+\mathrm{N} \log \mathrm{N}=\mathrm{O}(\mathrm{N} \log \mathrm{N})$
$\Rightarrow \mathrm{T}(\mathrm{N})=\mathrm{O}(\mathrm{N} \log \mathrm{N})$

Quicksort

\downarrow Mergesort requires temporary array for merging $\rightarrow \mathrm{O}(\mathrm{N})$ extra space - can we do in place sorting without extra space?
\uparrow Quicksort also uses a divide and conquer strategy, but does not use the $\mathrm{O}(\mathrm{N})$ extra space

- Main Idea:
\Rightarrow Partition array into left and right sub-arrays
- Elements in left sub-array < elements in right sub-array
\Rightarrow Recursively sort left and right sub-arrays
\Rightarrow Concatenate left and right sub-arrays $\rightarrow \mathrm{O}(1)$ time operation

Partitioning in Quicksort

\leftrightarrow Choose an element from the array as the pivot

- Move all elements < pivot into left sub-array and all elements > pivot into right sub-array
\Rightarrow The case where element = pivot can be handled in several ways
$\begin{array}{llllll}7 & 18 & 2 & 15 & 9 & 11\end{array}$
\Rightarrow Suppose pivot $=7$
\Rightarrow Left subarray $=2 \quad$ Right sub-array $=\begin{array}{llll}18 & 15 & 9 & 11\end{array}$
- What is the running time for an array of N elements?

Questions to be Answered...
\bullet How can we do partitioning in place?

- How do we pick the pivot to speed up running time?
\uparrow What is the best and worst case running time of Quicksort?

