Today’s agenda:
✦ Midterm solutions (on board)
✦ The Fastest Sorting Algorithms:
 ➤ Mergesort
 ➤ Quicksort
✦ Covered in Chapter 7 of the textbook

Recall from Last Time: Mergesort
✦ Based on the idea of “Divide and Conquer”:
 1. Divide problem into smaller parts
 2. Independently solve the parts
 3. Combine these solutions to get overall solution
✦ Mergesort: Divide array into two halves, recursively sort left and right halves, then merge two halves
✦ Example: Mergesort the input array:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

Preorder Traversal with a Stack

```c
void Stack_Preorder (Tree T, Stack S) {
  if (T == NULL) return; else push(T,S);
  while (!isempty(S)) {
    T = pop(S);
    print_element(T -> Element);
    if (T -> Right != NULL) push(T -> Right, S);
    if (T -> Left != NULL) push(T -> Left, S);
  }
}
```
Mergesort Analysis

- Let $T(N)$ be the running time for an array of N elements
- Mergesort divides array in half and calls itself on the two halves. After returning, it merges both halves using a temporary array (see textbook for code).
- Each recursive call takes $T(N/2)$ and merging takes $O(N)$
- Therefore, the recurrence relation for $T(N)$ is:
 - $T(1) = O(1)$ (base case: 1 element array → constant time)
 - $T(N) = 2T(N/2) + N$

Solving the Mergesort Recurrence Relation

- Can solve the recurrence by expanding the terms:
 - $T(N) = 2T(N/2) + N$
 - Since $T(N/2) = 2T(N/4) + N/2$,
 - $T(N) = 2[2T(N/4) + N/2] + N$
 - $= 2^2T(N/4) + 2N$
 - $= 2^3T(N/8) + 3N$
 - ... (recall that $2^\log N = N$)
 - $= 2^\log N T(1) + \log N N$
 - $= N O(1) + N log N = O(N \log N)$
 - $T(N) = O(N \log N)$

Quicksort

- Mergesort requires temporary array for merging → $O(N)$ extra space – can we do in place sorting without extra space?
- Quicksort also uses a divide and conquer strategy, but does not use the $O(N)$ extra space
- Main Idea:
 - Partition array into left and right sub-arrays
 - Elements in left sub-array < elements in right sub-array
 - Recursively sort left and right sub-arrays
 - Concatenate left and right sub-arrays → $O(1)$ time operation

Partitioning in Quicksort

- Choose an element from the array as the pivot
- Move all elements < pivot into left sub-array and all elements > pivot into right sub-array
 - The case where element = pivot can be handled in several ways
 - 7 18 2 15 9 11
 - Suppose pivot = 7
 - Left subarray = 2
 - Right subarray = 18 15 9 11
- What is the running time for an array of N elements?
QuickSort Example

- Sort the array containing the elements:
 9 12 4 15 2 5 17 1

Questions to be Answered…

- How can we do partitioning in place?
- How do we pick the pivot to speed up running time?
- What is the best and worst case running time of QuickSort?

Answers? Next class – same place, same time…

To Do:
Read Chapter 7