
1R. Rao, CSE 373

CSE 373 Lecture 16: Sorting Faster and Faster…

✦ What’s on our plate today?
➭ Faster sorting Algorithms:

➧ Shellsort
➧ Heapsort
➧ Mergesort

✦ Covered in Chapter 7 of the textbook

2R. Rao, CSE 373

Recall from Last Time: Insertion Sort

✦ Main Idea:
➭ Start with 1st element, insert 2nd if < 1st after shifting 1st element !

First 2 are now sorted…
➭ Insert 3rd after shifting 1st and/or 2nd as needed ! First 3 sorted…
➭ Repeat until last element is correctly inserted ! All N elements

sorted

✦ Example: Sort 19, 5, 2, 1
➭ 5, 19, 2, 1 (shifted 19)
➭ 2, 5, 19, 1 (shifted 5, 19)
➭ 1, 2, 5, 19 (shifted 2, 5, 19)

✦ Running time:
➭ Worst case ! reverse order input = Θ(N2)
➭ Best case ! input already sorted = O(N)

�

A

�

K

�

10
�

2
Shift right

3R. Rao, CSE 373

Shellsort: Motivation

✦ Main Insight: Insertion sort runs fast on nearly sorted
sequences ! do several passes of Insertion sort on different
subsequences of elements

✦ Example: Sort 19, 5, 2, 1
1. Do Insertion sort on subsequences of elements spaced apart by 2: 1st

and 3rd, 2nd and 4th

➭ 19, 5, 2, 1 ! 2, 1, 19, 5
2. Do Insertion sort on subsequence of elements spaced apart by 1:

➭ 2, 1, 19, 5 ! 1, 2, 19, 5 ! 1, 2, 19, 5 ! 1, 2, 5, 19

✦ Note: Fewer number of shifts than plain Insertion sort
➭ 4 versus 6 for this example

4R. Rao, CSE 373

Shellsort: Overview

✦ Named after Donald Shell – first algorithm to achieve o(N2)
➭ Running time is O(Nx) where x = 3/2, 5/4, 4/3, …, or 2 depending on

“increment sequence”

✦ In our example, we used the increment sequence: N/2, N/4,
…, 1 = 2, 1 (for N = 4 elements)
➭ This is Shell’s original increment sequence

✦ Shellsort: Pick an increment sequence ht > ht-1 > … > h1
➭ Start with k = t
➭ Insertion sort all subsequences of elements that are hk apart so that

A[i] ≤ A[i+hk] for all i ! known as an hk-sort
➭ Go to next smaller increment hk-1 and repeat until k = 1 (note: h1 = 1)

5R. Rao, CSE 373

Shellsort: Nuts and Bolts

void Shellsort(ElementType A[], int N){
int i, j, Increment; ElementType Tmp;
for(Increment = N/2; Increment > 0; Increment /= 2)
for(i = Increment; i < N; i++) {

Tmp = A[i];
for(j = i; j >= Increment; j -= Increment)

if(Tmp < A[j - Increment])
A[j] = A[j - Increment];

else
break;

A[j] = Tmp;
}

}
✦ Note: The two inner for loops correspond almost exactly to the code for

Insertion sort!
✦ Running time = ? (What is the worst case?)

6R. Rao, CSE 373

Shellsort: Analysis

✦ Simple to code but hard to analyze ! depends on increment
sequence

✦ What about the increment sequence N/2, N/4, …, 2, 1?
➭ Upper bound

➧ Shellsort does hk insertions sort with N/hk elements for k = 1 to t
➧ Running time = O(Σk=1…t hk (N/hk)2) = O(N2 Σk=1…t 1/hk) = O(N2)

➭ Lower bound
➧ What is the worst case?

7R. Rao, CSE 373

Shellsort: Analysis

✦ What about the increment sequence N/2, N/4, …, 2, 1?
➭ Upper bound

➧ Shellsort does hk insertions sort with N/hk elements for k = 1 to t
➧ Running time = O(Σk=1…t hk (N/hk)2) = O(N2 Σk=1…t 1/hk) = O(N2)

➭ Lower bound
➧ What is the worst case?
➧ Smallest elements in odd positions, largest in even positions

� 2, 11, 4, 12, 6, 13, 8, 14
➧ None of the passes N/2, N/4, …, 2 do anything!
➧ Last pass (h1 = 1) must shift N/2 smallest elements to first half and

N/2 largest elements to second half ! 4 shifts 1 slot, 6 shifts 2, 8
shifts 3, … = 1 + 2 + 3 + … (N/2 terms)

➧ at least N2 steps = ΩΩΩΩ(N2)

8R. Rao, CSE 373

Shellsort: Breaking the O(N2) Barrier

✦ The reason we got ΩΩΩΩ(N2) was because of increment sequence
➭ Adjacent increments have common factors (e.g. 8, 4, 2, 1)
➭ We keep comparing same elements over and over again
➭ Need to increment so that different elements are in different passes

✦ Hibbard’s increment sequence: 2k – 1, 2k-1 – 1, …, 7, 3, 1
➭ Adjacent increments have no common factors
➭ Worst case running time of Shellsort with Hibbard’s increments =

ΘΘΘΘ(N1.5) (Theorem 7.4 in text)
➭ Average case running time for Hibbard’s = O(N1.25) in simulations but

nobody has been able to prove it! (next homework assignment?)

✦ Final Thoughts: Insertion sort good for small input sizes
(~20); Shellsort better for moderately large inputs (~10,000)

9R. Rao, CSE 373

Hey…How about using Binary Search Trees?

✦ Can we beat O(N1.5) using a BST to sort N elements?

10R. Rao, CSE 373

Using Binary Search Trees for Sorting

✦ Can we beat O(N1.5) using a BST to sort N elements?
➭ Yes!!
➭ Insert each element into an initially empty BST
➭ Do an In-Order traversal to get sorted output

✦ Running time: N Inserts, each takes O(log N) time, plus
O(N) for In-Order traversal = O(N log N) = o(N1.5)

✦ Drawback – Extra Space: Need to allocate space for tree
nodes and pointers ! O(N) extra space, not in place sorting

✦ Waittaminute…what if the tree is complete, and we use an
array representation – can we sort in place?
➭ Recall your favorite data structure with the initials B. H.

11R. Rao, CSE 373

Using Binary Heaps for Sorting

✦ Main Idea:
➭ Build a max-heap
➭ Do N DeleteMax operations and

store each Max element in the
unused end of array

9

5 8

4 2

8 2 9 4 5
0 1 2 3 4 5 6 7

8 5 2 4 9

8

5 2

4 9

8

2 9

4 5

9 5 8 4 2

Build
Max-heap

DeleteMax

Largest element
in correct place

12R. Rao, CSE 373

Heapsort: Analysis

✦ Running time = time to build max-heap + time for N
DeleteMax operations = ?

13R. Rao, CSE 373

Heapsort: Analysis

✦ Running time = time to build max-heap + time for N
DeleteMax operations = O(N) + N O(log N) = O(N log N)

✦ Can also show that running time is Ω(N log N) for some
inputs, so worst case is ΘΘΘΘ(N log N)

✦ Average case running time is also O(N log N) (see text for
proof if you are interested)

14R. Rao, CSE 373

How about a “Divide and Conquer” strategy?

✦ Very important strategy in computer science:
1. Divide problem into smaller parts
2. Independently solve the parts
3. Combine these solutions to get overall solution

✦ Idea: Divide array into two halves, recursively sort left and
right halves, then merge two halves ! known as Mergesort

✦ Example: Mergesort the input array:

8 2 9 4 5 3 1 6

0 1 2 3 4 5 6 7

15R. Rao, CSE 373

Questions to ponder over the Weekend

Is Mergesort an in place sorting algorithm?

What is the running time for Mergesort?

How can I find time to read Chapter 7?

What is the meaning of life? (extra credit)

Have a good weekend!

