CSE 373 Lecture 16: Sorting Faster and Faster...

- What's on our plate today?
\Rightarrow Faster sorting Algorithms:
- Shellsort
- Heapsort
- Mergesort
\uparrow Covered in Chapter 7 of the textbook

Recall from Last Time: Insertion Sort

- Main Idea:
\Rightarrow Start with $1^{\text {st }}$ element, insert $2^{\text {nd }}$ if $<1^{\text {st }}$ after shifting $1^{\text {st }}$ element \rightarrow First 2 are now sorted.
\Rightarrow Insert $3^{\text {rd }}$ after shifting $1^{\text {st }}$ and/or $2^{\text {nd }}$ as needed \rightarrow First 3 sorted.
\Rightarrow Repeat until last element is correctly inserted \rightarrow All N elements sorted
- Example: Sort 19, 5, 2, 1
\Rightarrow 5, 19, 2, 1 (shifted 19) $\Rightarrow 2,5,19,1 \quad($ shifted 5,19$)$
$\Rightarrow 1,2,5,19 \quad$ (shifted $2,5,19$)

Running time:
\Rightarrow Worst case \rightarrow reverse order input $=\Theta\left(\mathrm{N}^{2}\right)$
\Rightarrow Best case \rightarrow input already sorted $=\mathrm{O}(\mathrm{N})$
R. Rao, CSE 373

2

Shellsort: Motivation

- Main Insight: Insertion sort runs fast on nearly sorted sequences \rightarrow do several passes of Insertion sort on different subsequences of elements
- Example: Sort 19, 5, 2, 1

1. Do Insertion sort on subsequences of elements spaced apart by $2: 1^{\text {st }}$ and $3^{\text {rd }}, 2^{\text {nd }}$ and $4^{\text {th }}$
$\Rightarrow \underline{19}, 5, \underline{2}, 1 \rightarrow \underline{2}, 1, \underline{19}, 5$
2. Do Insertion sort on subsequence of elements spaced apart by 1 :
$\Rightarrow \underline{2}, 1,19,5 \rightarrow \underline{1,2}, 19,5 \rightarrow \underline{1,2,19}, 5 \rightarrow \underline{1,2,5,19}$

- Note: Fewer number of shifts than plain Insertion sort $\Rightarrow 4$ versus 6 for this example
R. Rao, CSE 373

Shellsort: Overview

- Named after Donald Shell - first algorithm to achieve o(N^{2})
\Rightarrow Running time is $\mathrm{O}\left(\mathrm{N}^{x}\right)$ where $x=3 / 2,5 / 4,4 / 3, \ldots$, or 2 depending on "increment sequence"
- In our example, we used the increment sequence: $\mathrm{N} / 2, \mathrm{~N} / 4$,
$\ldots, 1=2,1$ (for $\mathrm{N}=4$ elements)
\Rightarrow This is Shell's original increment sequence
- Shellsort: Pick an increment sequence $h_{t}>h_{t-1}>\ldots>h_{1}$
\Rightarrow Start with $\mathrm{k}=\mathrm{t}$
\Rightarrow Insertion sort all subsequences of elements that are h_{k} apart so that $\mathrm{A}[\mathrm{i}] \leq \mathrm{A}\left[\mathrm{i}+\mathrm{h}_{\mathrm{k}}\right]$ for all $\mathrm{i} \rightarrow$ known as an h_{k}-sort
\Rightarrow Go to next smaller increment $\mathrm{h}_{\mathrm{k}-1}$ and repeat until $\mathrm{k}=1$ (note: $\mathrm{h}_{1}=1$)

```
Shellsort: Nuts and Bolts
void Shellsort( ElementType A [ ], int N ){
    int i, j, Increment. ElementType Tmp
    for( Increment = N/2; Increment > 0; Increment /= 2)
        for( i = Increment; i < N; i++)
            Tmp = A[ i ];
            for( j = i; j >= Increment; j -= Increment
            if(Tmp < A[ j - Increment ] )
                A[j] = A[j - Increment ];
                else
            A[ j ] = Tmp;
        }
}
Note: The two inner for loops correspond almost exactly to the code for
    Insertion sort!
* Running time = ? (What is the worst case?)
R. Rao, CSE 373

\section*{Shellsort: Analysis}
- What about the increment sequence \(\mathrm{N} / 2, \mathrm{~N} / 4, \ldots, 2,1\) ? \(\Rightarrow\) Upper bound
- Shellsort does \(\mathrm{h}_{\mathrm{k}}\) insertions sort with \(\mathrm{N} / \mathrm{h}_{\mathrm{k}}\) elements for \(\mathrm{k}=1\) to t
- Running time \(=\mathrm{O}\left(\Sigma_{\mathrm{k}=1 \ldots \mathrm{t}} \mathrm{h}_{\mathrm{k}}\left(\mathrm{N} / \mathrm{h}_{\mathrm{k}}\right)^{2}\right)=\mathrm{O}\left(\mathrm{N}^{2} \sum_{\mathrm{k}=1 \ldots \mathrm{t}} 1 / \mathrm{h}_{\mathrm{k}}\right)=\mathbf{O}\left(\mathrm{N}^{2}\right)\)
\(\Rightarrow\) Lower bound
What is the worst case?
- Smallest elements in odd positions, largest in even positions - \(\underline{2}, 11, \underline{4}, 12, \underline{6}, 13, \underline{8}, 14\)
- None of the passes \(\mathrm{N} / 2, \mathrm{~N} / 4, \ldots, 2\) do anything!
- Last pass \(\left(\mathrm{h}_{1}=1\right)\) must shift \(\mathrm{N} / 2\) smallest elements to first half and \(\mathrm{N} / 2\) largest elements to second half \(\rightarrow 4\) shifts 1 slot, 6 shifts 2,8 shifts \(3, \ldots=1+2+3+\ldots\) (N/2 terms)
- at least \(\mathrm{N}^{2}\) steps \(=\boldsymbol{\Omega}\left(\mathbf{N}^{2}\right)\)

\section*{Shellsort: Breaking the \(\mathrm{O}\left(\mathrm{N}^{2}\right)\) Barrier}
\(\uparrow\) The reason we got \(\boldsymbol{\Omega}\left(\mathbf{N}^{2}\right)\) was because of increment sequence
\(\Rightarrow\) Adjacent increments have common factors (e.g. 8, 4, 2, 1)
\(\Rightarrow\) We keep comparing same elements over and over again
\(\Rightarrow\) Need to increment so that different elements are in different passes
\(\uparrow\) Hibbard's increment sequence: \(2^{\mathrm{k}}-1,2^{\mathrm{k}-1}-1, \ldots, 7,3,1\)
\(\Rightarrow\) Adjacent increments have no common factors
\(\Rightarrow\) Worst case running time of Shellsort with Hibbard's increments \(=\) \(\boldsymbol{\Theta}\left(\mathbf{N}^{1.5}\right)\) (Theorem 7.4 in text)
\(\Rightarrow\) Average case running time for Hibbard's \(=\mathbf{O}\left(\mathbf{N}^{1.25}\right)\) in simulations but nobody has been able to prove it! (next homework assignment?)
- Final Thoughts: Insertion sort good for small input sizes \((\sim 20)\); Shellsort better for moderately large inputs \((\sim 10,000)\)


Using Binary Search Trees for Sorting
\(\uparrow\) Can we beat \(\mathrm{O}\left(\mathbf{N}^{1.5}\right)\) using a BST to sort \(N\) elements? \(\Rightarrow\) Yes!!
\(\Rightarrow\) Insert each element into an initially empty BST
\(\Rightarrow\) Do an In-Order traversal to get sorted output
\(\uparrow\) Running time: N Inserts, each takes \(\mathrm{O}(\log \mathrm{N})\) time, plus \(\mathrm{O}(\mathrm{N})\) for \(\operatorname{In}\)-Order traversal \(=\mathbf{O}(\mathbf{N} \log \mathbf{N})=\mathrm{o}\left(\mathrm{N}^{1.5}\right)\)
- Drawback - Extra Space: Need to allocate space for tree nodes and pointers \(\rightarrow \mathrm{O}(\mathrm{N})\) extra space, not in place sorting
- Waittaminute...what if the tree is complete, and we use an array representation - can we sort in place?
\(\Rightarrow\) Recall your favorite data structure with the initials B. H


Heapsort: Analysis
\(\leftrightarrow\) Running time \(=\) time to build max-heap + time for N DeleteMax operations \(=\) ?

\section*{Heapsort: Analysis}
\(\rightarrow\) Running time \(=\) time to build max-heap + time for N DeleteMax operations \(=\mathrm{O}(\mathrm{N})+\mathrm{NO}(\log \mathrm{N})=\mathbf{O}(\mathbf{N} \log \mathbf{N})\)
- Can also show that running time is \(\Omega(\mathrm{N} \log \mathrm{N})\) for some inputs, so worst case is \(\Theta(\mathbf{N} \log \mathbf{N})\)
- Average case running time is also \(\mathrm{O}(\mathrm{N} \log \mathrm{N}\) ) (see text for proof if you are interested)

Questions to ponder over the Weekend
Is Mergesort an in place sorting algorithm?
What is the running time for Mergesort?
How can I find time to read Chapter 7?
What is the meaning of life? (extra credit)

\section*{Have a good weekend!}

How about a "Divide and Conquer" strategy?
- Very important strategy in computer science:
1. Divide problem into smaller parts
2. Independently solve the parts
3. Combine these solutions to get overall solution
- Idea: Divide array into two halves, recursively sort left and right halves, then merge two halves \(\rightarrow\) known as Mergesort
- Example: Mergesort the input array:
```

