CSE 373 Lecture 16: Sorting Faster and Faster…

✦ What’s on our plate today?
 ➤ Faster sorting Algorithms:
 ▶ Shellsort
 ▶ Heapsort
 ▶ Mergesort
 ➤ Covered in Chapter 7 of the textbook

Recall from Last Time: Insertion Sort

✦ Main Idea:
 ➤ Start with 1st element, insert 2nd if < 1st after shifting 1st element →
 First 2 are now sorted…
 ➤ Insert 3rd after shifting 1st and/or 2nd as needed → First 3 sorted…
 ➤ Repeat until last element is correctly inserted → All N elements sorted

✦ Running time:
 ➤ Worst case → reverse order input = Θ(N²)
 ➤ Best case → input already sorted = O(N)

Shellsort: Motivation

✦ Main Insight: Insertion sort runs fast on nearly sorted sequences → do several passes of Insertion sort on different subsequences of elements

✦ Example: Sort 19, 5, 2, 1
 1. Do Insertion sort on subsequences of elements spaced apart by 2: 1st and 3rd, 2nd and 4th
 ➤ 19, 5, 2, 1 (shifted 19)
 2. Do Insertion sort on subsequences of elements spaced apart by 1:
 ➤ 2, 1, 19, 5 (shifted 19)
 ➤ Note: Fewer number of shifts than plain Insertion sort
 ➤ 4 versus 6 for this example

Shellsort: Overview

✦ Named after Donald Shell – first algorithm to achieve o(N²)
 ➤ Running time is O(N²x) where x = 3/2, 5/4, 4/3, …, or 2 depending on “increment sequence”

 In our example, we used the increment sequence: N/2, N/4, …, 1 = 2, 1 (for N = 4 elements)
 ➤ This is Shell’s original increment sequence

✦ Shellsort: Pick an increment sequence h₁ > h₂ > … > hₙ
 ➤ Start with k = 1
 ➤ Insertion sort all subsequences of elements that are hᵢ apart so that
 A[i] ≤ A[i+hᵢ] for all i → known as an hᵢ-sort
 ➤ Go to next smaller increment hᵢ₊₁ and repeat until k = 1 (note: h₁ = 1)
Shellsort: Nuts and Bolts

```c
void Shellsort( ElementType A[ ], int N ){
    int i, j, Increment; ElementType Tmp;
    for( Increment = N/2; Increment > 0; Increment /= 2 )
    {
        for( i = Increment; i < N; i++ )
        {
            Tmp = A[ i ];
            for( j = i; j >= Increment; j -= Increment )
            if ( Tmp < A[ j - Increment ] )
            else
                break;
            A[ j ] = Tmp;
        }
    }
}
```

✦ Note: The two inner for loops correspond almost exactly to the code for Insertion sort!

Running time = ? (What is the worst case?)

Shellsort: Analysis

✦ Simple to code but hard to analyze \(\rightarrow \) depends on increment sequence

✦ What about the increment sequence \(N/2, N/4, \ldots, 2, 1 \)?
 - Upper bound
 - Shellsort does \(h_k \) insertions sort with \(Nh_k \) elements for \(k = 1 \) to \(t \)
 - Running time = \(O(Nh_1) + O(Nh_2) + \ldots + O(Nh_t) = O(N^2) \)

✦ Lower bound
 - What is the worst case?
 - Smallest elements in odd positions, largest in even positions
 - None of the passes \(N/2, N/4, \ldots, 2 \) do anything!
 - Last pass \((h_t = 1) \) must shift \(N/2 \) smallest elements to first half and \(N/2 \) largest elements to second half \(\rightarrow \) 4 shifts 1 slot, 6 shifts 2, 8 shifts 3, \ldots \(\rightarrow \) at least \(N^2 \) steps

Final Thoughts: Insertion sort good for small input sizes (~20); Shellsort better for moderately large inputs (~10,000)

Shellsort: Breaking the O(N²) Barrier

✦ The reason we got \(\Omega(N^2) \) was because of increment sequence
 - Adjacent increments have common factors (e.g. 8, 4, 2, 1)
 - We keep comparing same elements over and over again
 - Need to increment so that different elements are in different passes

✦ Hibbard’s increment sequence: \(2^k - 1, 2^{k-1} - 1, \ldots, 7, 3, 1 \)
 - Adjacent increments have no common factors
 - Worst case running time of Shellsort with Hibbard’s increments = \(\Theta(N^{1.5}) \) (Theorem 7.4 in text)

✦ Average case running time for Hibbard’s = \(O(N^{1.25}) \) in simulations but nobody has been able to prove it! (next homework assignment?)

✦ Final Thoughts: Insertion sort good for small input sizes (~20); Shellsort better for moderately large inputs (~10,000)
Hey…How about using Binary Search Trees?

✦ Can we beat \(O(N^{1.5}) \) using a BST to sort \(N \) elements?

Using Binary Search Trees for Sorting

✦ Can we beat \(O(N^{1.5}) \) using a BST to sort \(N \) elements?

 ✗ Yes!!

 ✗ Insert each element into an initially empty BST
 ✗ Do an In-Order traversal to get sorted output

✦ Running time: \(N \) Inserts, each takes \(O(\log N) \) time, plus \(O(N) \) for In-Order traversal = \(O(N \log N) = o(N^{1.5}) \)

✦ Drawback – Extra Space: Need to allocate space for tree nodes and pointers \(\Rightarrow O(N) \) extra space, not in place sorting

✦ Waitaminute…what if the tree is complete, and we use an array representation – can we sort in place?
 ✗ Recall your favorite data structure with the initials B. H.

Using Binary Heaps for Sorting

✦ Main Idea:
 ✗ Build a max-heap
 ✗ Do \(N \) DeleteMax operations and store each Max element in the unused end of array

Heapsort: Analysis

✦ Running time = time to build max-heap + time for \(N \) DeleteMax operations = ?
Heapsort: Analysis

- Running time = time to build max-heap + time for N DeleteMax operations = O(N) + N O(log N) = O(N log N)
- Can also show that running time is \(\Omega(N \log N)\) for some inputs, so worst case is \(\Theta(N \log N)\)
- Average case running time is also O(N log N) (see text for proof if you are interested)

How about a “Divide and Conquer” strategy?

- Very important strategy in computer science:
 1. Divide problem into smaller parts
 2. Independently solve the parts
 3. Combine these solutions to get overall solution
- Idea: Divide array into two halves, recursively sort left and right halves, then merge two halves → known as Mergesort
- Example: Mergesort the input array:

```
  8 2 9 4 5 3 1 6
```

Questions to ponder over the Weekend

Is Mergesort an in place sorting algorithm?
What is the running time for Mergesort?
How can I find time to read Chapter 7?
What is the meaning of life? (extra credit)

Have a good weekend!