CSE 373 Lecture 14: Midterm Review

\rightarrow Today's Topics:
\Rightarrow Wrap-up of hashing
\Rightarrow Review of topics for midterm exam

- Midterm details:
\Rightarrow Chapters 1-6 in the textbook
\Rightarrow Closed book, closed notes
\Rightarrow Format: 5 questions, 100 points total
\Rightarrow Time: Monday, class time 11:30-12:20 (50 minutes)
\Rightarrow Blank sheets will be provided
\Rightarrow Bring pens/sharpened pencils (and sharpened minds)
R. Rao, CSE 373

Hashing: Applications

- Hash tables are used in many real-word applications:
\Rightarrow As symbol tables in compilers - store and access info about variables \& functions each time their name appears in program being compiled
\Rightarrow In game programs: Avoid recomputing moves by storing each board configuration encountered with corresponding best move in a hash table
\Rightarrow In spelling checkers: prehash entire dictionary and check if words in a document are in dictionary in constant time

Summary of Hashing

- Main reason to use hashing: speed!
$\Rightarrow \mathrm{O}(1)$ access time (at the cost of using space $\mathrm{O}($ TableSize $)$) \Rightarrow Only supports Insert/Find/Delete (no ordering of items)
- Components: TableSize (prime), hash function, collision strategy
- Chaining collisions allows $\lambda>1$ but uses space for pointers
- Probing requires $\lambda<1$ but avoids the time and space needed for allocating pointers

Midterm Review: Math Background

- Know the definitions of Big-Oh, little-oh, big-omega, and theta: $\Rightarrow T(N)=O(f(N))$ if there are positive constants c and n_{0} such that $\mathrm{T}(\mathrm{N}) \leq \operatorname{cf}(\mathrm{N})$ for $\mathrm{N} \geq \mathrm{n}_{0}$
- Think of $\mathrm{O}(\mathrm{f}(\mathrm{N}))$ as "less than or equal to" $\mathrm{f}(\mathrm{N}) \rightarrow$ Upper bound
- Think of $\Omega(\mathrm{f}(\mathrm{N})$) as "greater than or equal to" $\mathrm{f}(\mathrm{N}) \rightarrow$ Lower bound
- Think of $\Theta(f(N))$ as "equal to" $f(N) \rightarrow$ "Tight" bound, same growth rate
- Think of o(f(N)) as "strictly less than" $\mathrm{f}(\mathrm{N}) \rightarrow$ Strict upper bound $\Rightarrow \mathrm{T}(\mathrm{N})=\mathrm{o}(\mathrm{f}(\mathrm{N}))$ means $\mathrm{f}(\mathrm{N})$ has faster growth rate than $\mathrm{T}(\mathrm{N})$

$$
\begin{aligned}
& \text { Summations } \\
& \hline \sum_{i=1}^{N} i=\frac{N(N+1)}{2} \quad \begin{array}{r}
\text { Run time of program segment: } \\
\text { for }(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{N} ; \mathrm{i}++) \\
\text { for }(\mathrm{j}=1 ; \mathrm{j}<=\mathrm{i} ; \mathrm{j}++) \\
\text { printf("Hello } \left.\backslash \mathrm{n}^{\prime}\right) ;
\end{array} \\
& \sum_{i=1}^{N} i^{k} \approx \frac{N^{k+1}}{|k+1|} \text { for large } \mathrm{N} \text { and } \mathrm{k} \neq-1
\end{aligned}
$$

$$
\text { R. Rao, CSE } 373
$$

Recurrences

- Used to analyze run time $\mathrm{T}(\mathrm{N})$ of recursive function for input size N
\Rightarrow Write down cost of each line of function
\Rightarrow For recursive calls, write cost in terms of T and new input size N^{\prime}
\Rightarrow E.g. $\mathrm{T}(\mathrm{N})=($ cost for non-recursive lines $)+\mathrm{T}(\mathrm{N}-1)$
int sum (int v[], int num)
$\{$ if (num $==0$) return 0 ;
else return v[num-1] + sum(v,num-1); \}
- $T($ num $)=$ constant $+T($ num- 1$)$
$=2 *$ constant $+\mathrm{T}($ num -2$)=\ldots=$ num $*$ constant + constant
$=\Theta$ (num)
R. Rao, CSE $373 \quad 6$

6

Lists, Stacks, and Queues

- Lists: Insert, Find, Delete
\Rightarrow Singly-linked lists with header node
\Rightarrow Doubly-linked and Circularly-linked
\Rightarrow Run time and space needed for array-based versus pointer-based
- Stacks: Push, Pop
\Rightarrow Know what push and pop do
\Rightarrow Pointer versus array implementation
\Rightarrow Use of stacks in balancing symbols and function calls
- Queues: Enqueue and Dequeue
\Rightarrow Array-based implementation using Rear and Front, and modulo arithmetic for wrap-around

Trees

- Terminology: Root, children, parent, path, height, depth, etc.
\Rightarrow Height of a node is maximum path length to any leaf
\Rightarrow Height of tree is height of root
\Rightarrow Single node tree has height and depth 0
- Recursive definition of tree
\Rightarrow Null or a root node with (sub)trees as children
- Preorder, postorder and inorder traversal of a tree \Rightarrow Implementation using recursion or a stack
- Minimum and maximum depth of a binary tree

Binary Search Trees

- BSTs: What makes a binary tree a BST?
\Rightarrow Know how to do Find, Insert, and Delete in example BSTs
- AVL tree: What makes a BST an AVL tree?
\Rightarrow Balanced due to restriction on heights of left/right subtrees
\Rightarrow Upper bound on height of AVL tree of N nodes
\Rightarrow Worst case run time for operations
\Rightarrow Know what happens when you do Inserts into an AVL tree
\Rightarrow Re-balancing tree using Single or Double rotation
- Splay trees: No explicit balance condition but accessing an item causes splaying (rotations); item moves to root
\Rightarrow Amortized/worst case running time for operations
\Rightarrow Know what happens when you do Find/Insert/Delete

B-Trees

- Nodes have up to M children, with M-1 keys
\Rightarrow Children to the right of key k contain values $\geq k$
- All leaf nodes at same height
- Know how to do Find, Insert, and Delete in example B-trees \Rightarrow Insert may cause leaf node to overflow and split, causing parent to split etc.
\Rightarrow Deletion may cause leaf to become less than half full, causing a merge with sibling, which may cause parent to merge etc.
- What is the depth of an N-node B-tree?
\Rightarrow Find: Run time is $\mathrm{O}($ depth $* \log \mathrm{M})=\mathrm{O}\left(\log _{\lceil\mathrm{M} / 2\rceil} \mathrm{N}^{*} \log \mathrm{M}\right)=\mathrm{O}(\log \mathrm{N})$ \Rightarrow Insert and Delete: Run time is $\mathrm{O}($ depth $* M)=\mathrm{O}((\mathrm{M} / \log \mathrm{M}) * \log \mathrm{~N})$

Priority Queues: Binary Heaps

- What is a binary heap?
\Rightarrow Understand array implementation - parent and children in array \Rightarrow d-heaps: d children per node
- Main operations: FindMin, Insert, DeleteMin
\Rightarrow Know how to Insert/DeleteMin in example binary heaps
\Rightarrow Insert - add item to end of array, then percolate up
\Rightarrow DeleteMin - move item at end of array to top, then percolate down
- Other operations: DecreaseKey, IncreaseKey, Merge
- Depth and running time of operations for binary heap of N nodes
- No need to know details of leftist or skew heaps

Binomial Queues

- Recursive definition of binomial trees
\Rightarrow Contains one or more trees B_{i}, each containing exactly 2^{i} nodes
- Binomial queue $=$ forest of binomial trees, each obeying heap property
- Main operation: Merge two binomial queues \Rightarrow Start from $\mathrm{i}=0$ and attach pairs of B_{i}, creating $\mathrm{B}_{\mathrm{i}+1}$
- Insert item: Merge original BQ with new one-item BQ
- DeleteMin: Delete smallest root node and merge its subtrees with original BQ
- First Child/Next Sibling implementation and run time analysis

Hashing

- Know how hash functions work
\Rightarrow Hash $(\mathrm{X})=\mathrm{X} \bmod$ TableSize
\Rightarrow TableSize is chosen to be a prime number in real-world applications
- Know how the different collision resolution methods work: \Rightarrow Chaining: colliding values are stored in a linked list
\Rightarrow Open addressing with linear probing: look linearly $(\mathrm{F}(\mathrm{i})=\mathrm{i})$ for empty slot starting from initial hash value; clustering problem
\Leftrightarrow Open addressing with quadratic probing: look using squares $(\mathrm{F}(\mathrm{i})=$ i^{2}) for empty slot starting from initial hash value; theorem guarantees a slot if TableSize prime and array less than half full
\Rightarrow Rehashing: when probing is used and the table starts to get full
- Know what the load factor λ of a hash table means and how the run time of Find/Insert is related to λ

Next Class: Midterm exam

To Do:

1. Hash everything into brain but minimize collisions
2. Ace the midterm
