CSE 373 Lecture 11: Binomial Queues

- ♦ Today's Topics:
 - Sinomial Queues
 - Merge
 - Insert
 - DeleteMin
 - Implementation
 - Souther Priority Queues: d-heaps, leftist, and skew heaps
- ◆ Covered in Chapter 6 in the text

R. Rao, CSE 373 Lecture 1

Binomial Queues

- ✤ Binomial queues support all three priority queue operations Merge, Insert and DeleteMin in O(log N) time
- ◆ Idea: Maintain a collection of heap-ordered trees
 ⇒ Forest of binomial trees
- ◆ Recursive Definition of Binomial Tree (based on height k):
 ⇒ Only one binomial tree for a given height
 ⇒ Binomial tree of height 0 = single root node
 - \Rightarrow Binomial tree of height $k = B_k = Attach B_{k-1}$ to root of another B_{k-1}

2

R. Rao, CSE 373 Lecture 1

1

Binomial Queue Properties

- ✤ Suppose you are given a binomial queue of N nodes
- 1. There is a unique set of binomial trees for N nodes
- 2. What is the maximum number of trees that can be in an N-node queue?
- ⇒ 1 node → 1 tree B_0 ; 2 nodes → 1 tree B_1 ; 3 nodes → 2 trees B_0 and B_1 ; 7 nodes → 3 trees B_0 , B_1 and B_2 ...

R. Rao, CSE 373 Lecture 1

5

Number of Trees in a Binomial Queue

- What is the maximum number of trees that can be in an N-node binomial queue?
 ⇒ 1 node → 1 tree B₀; 2 nodes → 1 tree B₁; 3 nodes → 2 trees B₀ and B₁; 7 nodes → 3 trees B₀, B₁ and B₂...
- ✤ Maximum is when all trees are used.
- ◆ So, number of trees in an N-node binomial queue is ≤ (log(N+1)-1)+1=O(log N)

6

R. Rao, CSE 373 Lecture 1

Binomial Queues: Merge

- Main Idea: Merge two binomial queues by merging individual binomial trees
 - $\Rightarrow \ \ \, \text{Since } B_{k+1} \text{ is just two } B_k \text{ 's attached together, merging trees is easy } \\$
- Steps for creating new queue by merging:
 1. Start with B_k for smallest k in either queue.
 - 2. If only one \hat{B}_k , add B_k to new queue and go to next k.
 - Merge two B_k's to get new B_{k+1} by making larger root the child of smaller root. Go to step 2 with k = k + 1.

R. Rao, CSE 373 Lecture 1

7

- ✤ What is the run time for Merge of two O(N) queues?
- + How would you insert a new item into the queue?

R. Rao, CSE 373 Lecture 1

Binomial Queues: Merge and Insert

- + What is the run time for Merge of two O(N) queues? \Rightarrow O(number of trees) = O(log N)
- ♦ How would you insert a new item into the queue? \Rightarrow Create a single node queue B_0 with new item and merge with existing queue
 - Again, O(log N) time
- ◆ On-board example: Insert 1, 2, 3, ...,7 into an empty binomial queue

R. Rao, CSE 373 Lecture 1

10

Binomial Queues: DeleteMin

♦ Steps:

- 1. Find tree B_k with the smallest root
- 2. Remove B_k from the queue
- 3. Delete root of B_k (return this value); You now have a second queue made up of the forest B_0, B_1, \dots, B_{k-1} Merge this queue with remainder of the original (from step 2)
- 4.
- ◆ Example: Insert 1, 2, ..., 7 into empty queue and DeleteMin
- Run time analysis: Steps 1 through 4 = how much time for ٠ an N-node queue?

R. Rao, CSE 373 Lecture 1

11

Binomial Queues: DeleteMin

- + Steps:
 - 1. Find tree B_k with the smallest root
 - 2. Remove B_k from the queue
 - 3. Delete root of B_k (return this value); You now have a new
 - queue made up of the forest B₀, B₁, ..., B_{k-1}
 4. Merge this queue with remainder of the original (from step 2)
- ◆ Example: Insert 1, 2, ..., 7 into empty queue and DeleteMin
- Run time analysis: Step 1 is O(log N), step 2 and 3 are + O(1), and step 4 is $O(\log N)$. Total time = $O(\log N)$

R. Rao, CSE 373 Lecture 1

12

Implementation of Binomial Queues

- ✤ DeleteMin requires fast access to all subtrees of root Need pointer-based implementation ⇒ Use First-Child/Next-Sibling representation of trees
- + Merge adds one binomial tree as child to another This added tree will now be the largest subtree
- + Question: Should we order subtrees in increasing or decreasing size?

R. Rao, CSE 373 Lecture 1

13

Implementation of Binomial Queues

- + DeleteMin requires fast access to all subtrees of root ⇒ Need pointer-based implementation Use First-Child/Next-Sibling representation of trees \Rightarrow Use array of pointers to root nodes of binomial trees
- ♦ Merge adds one binomial tree as child to another ⇒ This added tree will now be the largest subtree
- Question: Should we order subtrees in increasing or decreasing size? Order in terms of decreasing subtree size
- Avoids traversal of linked list of next sibling pointers ◆ What does our queue containing 1, 2, ..., 7 look like?

14

6

16

R. Rao, CSE 373 Lecture 1

Other Priority Queues: d-Heaps

- Similar to a binary heap, except we allow more than 2 children per node
- + d-heap has d children per node
- ◆ Example: 3-heap root is A[1]; children of node A[i] are at what locations?

15

R. Rao, CSE 373 Lecture 1

Other Priority Queues: d-Heaps ♦ Similar to a binary heap, except we allow more than 2 children per node + d-heap has d children per node ◆ Example: 3-heap - root is A[1] and children of node A[i] are

- A[3i-1], A[3i], A[3i+1]
- ✤ Just as in B-tree, more children means
 - shallower heap \Rightarrow Depth is O(log_d N) instead of O(log₂ N)
 - ⇒ But, d-1 comparisons to find smallest child
 - Tradeoff between depth and "breadth"
 - Optimal d value is application dependent

R. Rao, CSE 373 Lecture 1