CSE 373 Lecture 11: Binomial Queues

- Today's Topics:
\Rightarrow Binomial Queues
- Merge
- Insert
- DeleteMin
- Implementation
\Rightarrow Other Priority Queues: d-heaps, leftist, and skew heaps
\leftrightarrow Covered in Chapter 6 in the text

Binomial Queues

- Binomial queues support all three priority queue operations Merge, Insert and DeleteMin in $\mathrm{O}(\log \mathrm{N})$ time
- Idea: Maintain a collection of heap-ordered trees \Rightarrow Forest of binomial trees
- Recursive Definition of Binomial Tree (based on height k): \Rightarrow Only one binomial tree for a given height
\Rightarrow Binomial tree of height $0=$ single root node
\Rightarrow Binomial tree of height $\mathrm{k}=\mathrm{B}_{\mathrm{k}}=$ Attach $\mathrm{B}_{\mathrm{k}-1}$ to root of another $\mathrm{B}_{\mathrm{k}-1}$

Binomial Queue Properties

- Suppose you are given a binomial queue of N nodes

1. There is a unique set of binomial trees for N nodes
2. What is the maximum number of trees that can be in an N node queue?
$\Rightarrow 1$ node $\rightarrow 1$ tree $\mathrm{B}_{0} ; 2$ nodes $\rightarrow 1$ tree $\mathrm{B}_{1} ; 3$ nodes $\rightarrow 2$ trees B_{0} and $\mathrm{B}_{1} ; 7$ nodes $\rightarrow 3$ trees $\mathrm{B}_{0}, \mathrm{~B}_{1}$ and B_{2}..

Binomial Queues: Merge

- Main Idea: Merge two binomial queues by merging individual binomial trees
\Rightarrow Since B_{k+1} is just two B_{k} 's attached together, merging trees is easy
- Steps for creating new queue by merging:

1. Start with B_{k} for smallest k in either queue.
2. If only one B_{k}, add B_{k} to new queue and go to next k.
3. Merge two B_{k} 's to get new B_{k+1} by making larger root the child of smaller root. Go to step 2 with $\mathrm{k}=\mathrm{k}+1$.

Binomial Queues: Merge Example

- Merge H1 and H2

H1:
H2:
(3) 5

(21)

Binomial Queues: Merge and Insert

- What is the run time for Merge of two $\mathrm{O}(\mathrm{N})$ queues?
- How would you insert a new item into the queue?

Binomial Queues: Merge and Insert
\rightarrow What is the run time for Merge of two $\mathrm{O}(\mathrm{N})$ queues? $\Rightarrow \mathrm{O}$ (number of trees) $=\mathrm{O}(\log \mathrm{N})$

- How would you insert a new item into the queue?
\Rightarrow Create a single node queue B_{0} with new item and merge with existing queue
\Rightarrow Again, $\mathrm{O}(\log \mathrm{N})$ time
- On-board example: Insert 1, 2, 3, .., 7 into an empty binomial queue

Binomial Queues: DeleteMin

- Steps:

1. Find tree B_{k} with the smallest root
2. Remove B_{k} from the queue
3. Delete root of B_{k} (return this value); You now have a second queue made up of the forest $B_{0}, B_{1}, \ldots, B_{k-1}$
4. Merge this queue with remainder of the original (from step 2)

- Example: Insert $1,2, \ldots, 7$ into empty queue and DeleteMin
- Run time analysis: Steps 1 through 4 = how much time for an N -node queue?

Binomial Queues: DeleteMin

- Steps:

1. Find tree B_{k} with the smallest root
2. Remove B_{k} from the queue
3. Delete root of B_{k} (return this value); You now have a new queue made up of the forest $\mathrm{B}_{0}, \mathrm{~B}_{1}, \ldots, \mathrm{~B}_{\mathrm{k}-1}$
4. Merge this queue with remainder of the original (from step 2)

- Example: Insert $1,2, \ldots, 7$ into empty queue and DeleteMin
- Run time analysis: Step 1 is $\mathrm{O}(\log \mathrm{N})$, step 2 and 3 are $\mathrm{O}(1)$, and step 4 is $\mathrm{O}(\log \mathrm{N})$. Total time $=\mathrm{O}(\log \mathrm{N})$

Implementation of Binomial Queues

\rightarrow DeleteMin requires fast access to all subtrees of root \Rightarrow Need pointer-based implementation
\Rightarrow Use First-Child/Next-Sibling representation of trees

- Merge adds one binomial tree as child to another \Rightarrow This added tree will now be the largest subtree
- Question: Should we order subtrees in increasing or decreasing size?

Implementation of Binomial Queues

- DeleteMin requires fast access to all subtrees of root \Rightarrow Need pointer-based implementation
\Rightarrow Use First-Child/Next-Sibling representation of trees
\Rightarrow Use array of pointers to root nodes of binomial trees
- Merge adds one binomial tree as child to another \Rightarrow This added tree will now be the largest subtree
- Question: Should we order subtrees in increasing or decreasing size?
\Rightarrow Order in terms of decreasing subtree size
\Rightarrow Avoids traversal of linked list of next sibling pointers
- What does our queue containing $1,2, \ldots, 7$ look like?

Other Priority Queues: d-Heaps

- Similar to a binary heap, except we allow more than 2 children per node
- d-heap has d children per node
- Example: 3-heap - root is $\mathrm{A}[1]$; children of node $\mathrm{A}[\mathrm{i}]$ are at what locations?

Other Priority Queues: d-Heaps

- Similar to a binary heap, except we allow more than 2 children per node
- d-heap has d children per node
- Example: 3-heap - root is $\mathrm{A}[1]$ and children of node $\mathrm{A}[\mathrm{i}]$ are $\mathrm{A}[3 \mathrm{i}-1], \mathrm{A}[3 \mathrm{i}], \mathrm{A}[3 \mathrm{i}+1]$
- Just as in B-tree, more children means shallower heap
\Rightarrow Depth is $\mathrm{O}\left(\log _{\mathrm{d}} \mathrm{N}\right)$ instead of $\mathrm{O}\left(\log _{2} \mathrm{~N}\right)$
\Rightarrow But, d-1 comparisons to find smallest child
\Rightarrow Tradeoff between depth and "breadth"
\Rightarrow Optimal d value is application dependent

