CSE 373: Data Structures and Algorithms
Autumn Quarter 2000

Instructor: Prof. Linda Shapiro
Email: shapiro@cs.washington.edu
Tas: Valentin Ruzanev
Ann Li
Karen Liu

Purpose: to study the fundamental data structures and algorithms used in computer science.

• Data Structures
• Algorithm Analysis
• Applications

Text: Data Structures and Algorithm Analysis in C

Topics to be Covered
- Introduction (Ch 1)
- Algorithm Analysis (Ch 2)
- Review of Lists, Stacks, Queues (Ch 3)
- Trees and Search Trees (Ch 4)
- Hashing (Ch 5)
- Priority Queues: Heaps (Ch 6)
- Disjoint Sets: Union-Find (Ch 8)
- Graph Algorithms (Ch 9)

Applications:
- Computer Graphics
- Computer Vision
- Artificial Intelligence
- Databases

INTRODUCTION
Chapter 1 Overview

Motivation for Good Algorithm Design
Math Review (for use in reading proofs)
Proofs by Induction, Counterexample, Contradiction
Recursion

What is an algorithm?

What would be a good algorithm for achieving tulips in my garden next spring?

An algorithm to achieve X is a procedure that:
- Halt
- Correctly achieves X

Procedure for computing $N/5$ for integer N

```
count = 0;
do {
    count = count + 1;
    N = N - 5;
} while (N >= 0)
```

Does it always halt?
Does it correctly compute $N/5$?

What is a data structure?

Informal Definition: a method of organizing data
Examples?

Formal Definition: an abstract data type (ADT)

In C:
- structs
- functions that operate on them

In C++:
- classes
- methods

Example: VectorArray

Conceptual:
- Size (of array) \square
- NumElements \square
Data

| 0 | 1 | Size: 1 |

What abstract operations are needed?
Iteration, Recursion, Induction

1. Write an iterative function to find the sum of the first num elements of a VectorArray stored in array v.

```c
int sumit ( int v[ ], int num) {
    int sum;
    sum = 0;
    for (i = 0; i < num; i++)
        sum =
    return sum;
}
```

Strengths of recursive approach:
- simplifies code
- can be proven correct

Weaknesses:
- slower than iteration
- uses more memory for the stack

Principle of Mathematical Induction

Let P(c) be true for small constant c >= 0.
Suppose whenever P(k) is true, so is P(k+1).
Then P(n) is true for all n >= 0.

Ex. 1.10a Prove by induction that
\[\sum_{i=1}^{N} (2i - 1) = N^2 \]

Basis: N=1

Inductive Hypothesis:

Inductive Step:

Prove by induction that sumit(v,n) correctly returns the sum of the first n elements of array v, n \geq 0.

Basis: If n=0,
Inductive Hypothesis: Assume sumit(v,k) ...

Inductive Step: sumit(v,k+1)