Why should we consider another indexing technique when B-trees are so great?

• To avoid the multi-level index structure on disk.
• To get a small constant search time for equality queries to databases.
• To provide another structure that is useful for internal memory look-up tables.

Given:
1. a relatively large block of storage called the hash table
2. an attribute or key

Possible Goals:
1. Insert: store the key and its value in the table.
2. Find: find the key in the table and return its value.
3. Delete: remove the key and its value from the table.

Hash Function:
A hash function maps keys to ‘random’ addresses within the hash table.

Example:
Let the hash table be N locations long.
Suppose the keys are integers or can somehow be converted to integers.

\[f(key) = key \mod N \]

is the most common, simple hash function.

NOTE: in hashing, the potential number of possible keys is much greater than the number of keys in use at any given time.
DS.H.7

Character String Keys:

- $h_4(key) = \text{char_sum}(key) \mod N$
 - **Add together the byte representations of each of the characters and normalize to table size.**

- $h_5(key) = \text{extract}(P, Q, \text{char_product}(key))$
 - **Multiply together the byte representations of each of the characters and extract Q bits starting at bit P to generate addresses in the correct range.**

- $h_6(key) = \sum_{i=0}^{\text{key size} - 1} key[i] \times 32^i \mod \text{table size}$
 - **(book’s Fig 5.5 is wrong)**

DS.H.8

Separate Chaining

Separate chaining is a collision strategy that uses linked lists to solve the collision problem.

- A “bin” of the hash table merely points to a linked list that hold all keys that hash to that bin.

Example:

- Bin 25 holds 3 different keys.

DS.H.9

Open Addressing

Open addressing uses one big contiguous hash table.

When there is a collision, it tries alternate locations, using the function:

$$h_i(x) = (h_0(x) + F(i)) \mod N$$

- It first tries $h_0(x)$, then $h_1(x)$, etc. until it finds the key in the table or comes to an empty cell to put it in.

- $h_0(x) = 25$
- $h_1(x) = 45$
- $h_2(x) = 35$

So how do we define $F(i)$?

DS.H.10

There are several common ways:

- **Linear Probing**
 - $F(i)$ is a linear function of i
 - $F(i) = i$ is most common.
 - It tries the next position for each probe.
 - $h_0(x) = h(x)$
 - $h_1(x) = h(x) + 1$
 - $h_2(x) = h(x) + 2$

- This is simple, but has the problem of primary clustering.

- Clusters develop in the table and most keys lead to some search.

Theorem:

If quadratic probing is used and the table size is prime, then a new element can always be inserted if the table is at least half empty. (proof by contradiction is readable)

DS.H.11

2. Quadratic Probing

- $F(i)$ is a quadratic function of i
 - $F(i) = i^2$

 - This spreads out the probes more.
 - $h_0(x) = h(x)$
 - $h_1(x) = h(x) + 1$
 - $h_2(x) = h(x) + 4$

 - This works better, but some secondary clustering effects have been reported.

DS.H.12

2. **Double hashing**

- Use a second hash function $h_2(x)$
 - $h(x) = h_1(x) + i \times h_2(x)$

 - This spreads out the probes more.

Variant: Use a sequence of hash functions

$$h(i) = h(i) \mod N$$

Advantages of Open Addressing:

- Insertion and deletion easy, but it requires pointers, which isn’t so good on disk.

Rehashing
/* If the table is getting too full, rebuild it with twice the space. Do this infrequently and at night. */

<table>
<thead>
<tr>
<th>Name</th>
<th>Bin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Louis Smith</td>
<td>0</td>
</tr>
<tr>
<td>John Smith</td>
<td>1</td>
</tr>
<tr>
<td>Kate Green</td>
<td>2</td>
</tr>
<tr>
<td>Ray Finch</td>
<td>3</td>
</tr>
<tr>
<td>Craig Mir</td>
<td>4</td>
</tr>
<tr>
<td>John Smith</td>
<td>5</td>
</tr>
<tr>
<td>Ray Finch</td>
<td>6</td>
</tr>
</tbody>
</table>

Why is 45 in bin 1 when 45 % 5 = 0?

Complexity Analysis
Let \(N \) be the number of entries in the table at the current time.
Let \(T \) be the table size.
Let \(\lambda = NT \) be the load factor.

Chaining:
\(N \) can be larger or smaller than \(T \).
* e.g. We can have 10 lists of 3 elements each.
1. What is the longest any list can be?
2. What is the shortest any list can be?
3. What is the average length of a list?

Insertion time: \(O(1) \)

Open Addressing:
\(N \leq T, \lambda < 1 \) (full is BAD)

 Linear Probing:
What is the average number of cells probed in a successful search?
\(\lambda = \text{percentage of full cells.} \)
\(1 - \lambda \) is the percentage of empty cells.
\(\lambda (1 - \lambda) \) is the number of cells searched before an empty one is found.
Maximum probes is \(1 + \lambda (1 - \lambda) \).
Average probes is \(\frac{1}{2} (1 + \lambda (1 - \lambda)) \).

Extendible Hashing
Extendible hashing is a fast access method for dynamic files.
For data on disk, we don’t want to chase pointers.
Suppose that \(m \) (key, data) pairs fit in one disk block and that the hash function returns a 32-bit string.
Keep a directory that is organized according to the leading 4 bits of the hash value.
- \(D \) changes dynamically as the table grows.
- Use only enough bits to distinguish blocks.
Suppose we add key 0010. It belongs in bucket 0, which is full. So we split it into buckets 00 and 01.

\[
\begin{array}{c|c|c}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}
\]

In extensible hashing, the index grows as needed.

Complexity:

\[
N: \text{entries} \\
M: \text{block size}
\]

Expected number of leaves: \((NM) \log_{2^M} \]

Expected directory size: \(O(N^{1+1/M}) / M)

The bigger \(M\) is the better.

Hashing Applications

- in compilers: to store and access identifiers
- in databases: for fast equality queries
- in image analysis for storing large structures

- Region Adjacency Graph Construction
 - Large number of regions with only a small percentage active at one time.

- Geometric Hashing
 - Large number of (object, transform) pairs requiring lots of quick lookups.